Vincenzo Vullo

Circular Cylinders and Pressure Vessels

Stress Analysis and Design

Springer
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Other Types of Instability of Thin-Walled Circular Cylinders</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Foreword</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Instability of Thin-Walled Circular Cylinders Subjected to Axial Load</td>
<td></td>
</tr>
<tr>
<td>3.2.1</td>
<td>Compendia on Elementary Column Theory (Overall Instability or Euler Buckling)</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Overview of Local Instability: Linear Buckling of Circular Cylinders</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Overview of Torsional Buckling of Circular Cylinders</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Overview of Flexural Ovalization Buckling of Circular Cylinders</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Thin-Walled Circular Cylinders Under Internal Pressure, Loaded Beyond the Elastic Range</td>
<td>58</td>
</tr>
<tr>
<td>3.6</td>
<td>Thin-Walled Circular Cylinders Under Internal Pressure and Axial Tension, and Stressed Beyond Yielding</td>
<td>60</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Hoop Stress Greater than Axial Stress</td>
<td>63</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Axial Stress Greater than Hoop Stress</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Thick-Walled Circular Cylinders Under Internal and/or External Pressure Stressed in the Linear Elastic Range</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Radial Stress and Hoop Stress</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Axial Stress</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Radial and Hoop Stress Distributions Through the Wall Thickness</td>
<td>81</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Stress Distributions in Circular Cylinders Under Internal Pressure</td>
<td>82</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Stress Distributions in Circular Cylinders Under External Pressure</td>
<td>85</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Remarks on Maximum Hoop Stress</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of Strain State and Displacements</td>
<td>89</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Circular Cylinders with Closed Ends</td>
<td>89</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Circular Cylinders with Open Ends</td>
<td>91</td>
</tr>
<tr>
<td>4.6</td>
<td>Design Considerations for Circular Cylinders under Internal Pressure</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>Design of Thick-Walled Circular Cylinders</td>
<td>95</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Thick-Walled Circular Cylinders Under Internal Pressure</td>
<td>98</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Thick-Walled Circular Cylinders Under External Pressure</td>
<td>105</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Asymmetric Behavior of Circular Cylinders Under Internal Pressure or External Pressure</td>
<td>108</td>
</tr>
</tbody>
</table>
5 Concentric Circular Cylinders with Radial Interference Fit and Multilayer Circular Cylindrical Structures 109
 5.1 Introduction ... 109
 5.2 Two Concentric Circular Cylinders Assembled with an Interference Fit .. 110
 5.3 Optimizing Two Circular Cylinders Assembled with an Interference Fit ... 116
 5.4 Optimizing Two Circular Cylinders Assembled with an Interference Fit and Subjected to Internal Pressure 119
 5.4.1 Case 1 (Same Material and Same Yield Strength) 120
 5.4.2 Case 2 (Same Material and Different Yield Strength) .. 123
 5.4.3 Case 3 (Different Material and Same Yield Strength) .. 124
 5.4.4 Case 4 (Different Material and Different Yield Strength) .. 124
 5.4.5 Concluding Remarks ... 124
 5.5 Effects of Centrifugal Force ... 126
 5.6 Shrink-Fit Shaft/Hub Assemblies 129
 5.7 Multilayer Circular Cylindrical Structures 130

6 Circular Cylinders Subjected to a Radial Temperature Gradient and Stressed in the Elastic Range ... 141
 6.1 General Considerations .. 141
 6.2 Cylinders of Annular Cross-Section with Small Axial Dimension (Rings) ... 142
 6.3 Long Cylinders of Annular Cross-Section 145
 6.4 Long Circular Cylinder with Clamped Ends or Indefinitely Extended in the Direction of Its Axis and Subjected to Thermal Load Defined by a Generic Function $T = T(r)$... 149
 6.4.1 Long Circular Cylinder with Clamped Ends or Indefinitely Extended in the Direction of Its Axis and Subjected to Thermal Load Defined by Fourier's Law ... 153
 6.5 Circular Cylinder of Finite Length with Free Ends and Subjected to Thermal Load Defined by a Generic Function $T = T(r)$.. 161
 6.5.1 Circular Cylinder of Finite Length with Free Ends and Subjected to Thermal Load Defined by Fourier's Law ... 165
 6.6 Edge Effects on the Free Ends of a Thin-Walled Circular Cylinder Subjected to Thermal Load 171
6.7 Solid Circular Cylinder of Finite Length and with Free Ends, Subjected to Transient Thermal Load .. 174

7 Thick-Walled Circular Cylinders in the Linear Elastic-Perfectly Plastic State After Loading Beyond the Elastic Range 179
7.1 General and Scope .. 179
7.2 Yield Theories .. 181
7.3 General Considerations on the Use of Yield Theories 188
7.4 Elastic-Breakdown Pressure ... 192
7.5 Circular Cylinder Loaded Beyond Initial Yielding 199
 7.5.1 Autofrettage Procedures 199
 7.5.2 Analysis of Circular Cylinders Loaded Beyond Initial Yielding .. 201
 7.5.3 Plastic Reserve ... 209

8 Autofrettage of Thick-Walled Circular Cylinders 211
8.1 General Considerations on Autofrettage 211
8.2 Residual and Working Stresses 212
8.3 Design Considerations for Autofrettage: Overstressing and Overstrain .. 216
8.4 Residual Stresses Resulting from Partial Overstrain, Without Reverse Yielding 217
8.5 Limit Conditions for Reverse Yielding 218
8.6 Residual Stresses Resulting from Full Overstrain, with Reverse Yielding .. 222
8.7 Repressurizing a Circular Cylinder After Reverse Yielding . . 228
8.8 Design Criteria for Autofrettage 232
8.9 Autofrettage of Composite Multilayer Structures 237

9 Thick-Walled Circular Cylinders in the Elasto-Plastic State or Viscous State as a Result of Steady-State Creep 239
9.1 General ... 239
9.2 Introductory Remarks on Creep 240
 9.2.1 Theories for Creep Under Constant Uniaxial Stress .. 242
 9.2.2 Theories for Creep Under Variable Uniaxial Stress .. 243
 9.2.3 Effects of the Multiaxial Stress State .. 245
9.3 Stress Analysis in the Full Plastic or Steady-State Viscous State .. 246
9.4 Partial Plasticization: Mixed Plastic and Elastic Strain State .. 252
9.5 Comparison Between the Four Yield Theories Considered... 256
9.6 Partial Plasticization in More General Terms 257
9.7 Multilayer Circular Cylinders 265

10 Bending Theory of Circular Cylindrical Shells Under Axisymmetric Loads ... 275
10.1 General Considerations and Fundamental Relations 275
10.2 Long Circular Cylindrical Shells Subjected to Concentrated Loads on One Edge 282
10.3 Long Circular Cylindrical Shells with Constrained Edges Under Uniform Internal Pressure 287
10.3.1 Calculation Example 288
10.4 Long Circular Cylindrical Shells Subjected to Concentrated Line Load Distributed Uniformly Along a Circumference ... 290
10.5 Long Circular Cylindrical Shells Subjected to Load Distributed Through a Portion of Finite Length 293
10.6 Analysis of Short Circular Cylindrical Shells 295
10.7 Analysis of Circular Cylindrical Shells Reinforced by Equidistant Stiffening Rings 299
10.8 Stress Analysis in a Reinforced Circular Cylindrical Shell ... 302
10.8.1 Calculation Example 305

11 Cylindrical Pressure Vessels 307
11.1 General ... 307
11.2 Cylindrical Pressure Vessels with Flat-Plate Closures: Closure Absolutely Rigid in Its Own Plane 309
11.2.1 Calculation Example 313
11.3 Cylindrical Pressure Vessels with Flat-Plate Closures: Closure Deformable in Its Own Plane 314
11.3.1 Calculation Example 316
11.4 Cylindrical Pressure Vessels with Flat-Plate Closures: Closure Deformable in Its Own Plane and Middle Plane Which does not Coincide with the Junction Plane 317
11.4.1 Calculation Example 319
11.5 Cylindrical Pressure Vessels with Flat-Plate Closures that are Deformable in Their Own Plane: Relations Obtained by Other Researchers 321
11.5.1 Calculation Example 322
11.6 Cylindrical Pressure Vessels with Formed Closures Having Hemispherical Meridian Curve (Hemispherical Dished Heads) .. 324
11.6.1 Calculation Examples 330
11.7 Cylindrical Pressure Vessels with Formed Closures Having Semielliptical Meridian Curve (Elliptical Dished Heads) ... 331

11.8 The Problem of Discontinuity in Cylindrical Pressure Vessels with Formed Closures Having Semielliptical Meridian Curve ... 335
 11.8.1 Calculation Example ... 348

11.9 Thickness Discontinuities Between Cylindrical Shells ... 349
 11.9.1 Calculation Example ... 351

References ... 353

Name Index .. 369

Subject Index .. 373