Contents

Preface xi

I Electromagnetism and Classical Mechanics 1

1 Electromagnetic Fields in Accelerator Components 3

1.1 Boundary Conditions on Electromagnetic Fields 7
1.1.1 Surface of an infinite permeability material 8
1.1.2 Surface of an ideal conductor 11

1.2 Two-Dimensional Multipole Fields 12
1.2.1 Current distribution for a pure multipole 18
1.2.2 Geometry of iron-dominated multipole magnets 22
1.2.3 Multipole decomposition 26

1.3 Three-Dimensional Fields 33
1.3.1 Cartesian and cylindrical modes 34
1.3.2 Generalised gradients 39

1.4 Fields in Radiofrequency Cavities 43
1.4.1 Rectangular cavities 46
1.4.2 Cylindrical cavities 53

2 Hamiltonian for a Particle in an Accelerator Beam Line 59

2.1 The Hamiltonian for a Straight Beam Line 61
2.2 Dynamical Variables for Beam Dynamics 68
2.3 The Hamiltonian in a Curved Co-ordinate System 72
2.4 Symplectic Transfer Maps and Liouville’s Theorem 76

vii
II Single-Particle Linear Dynamics

3 Linear Transfer Maps for Common Components
 3.1 Drift Space
 3.2 Dipole Magnet
 3.3 Dipole Fringe Fields and Edge Focusing
 3.4 Quadrupole Magnet
 3.5 Solenoid
 3.6 Radiofrequency Cavity
 3.7 Spin Dynamics

4 Linear Optics in Uncoupled Beam Lines
 4.1 A FODO Lattice
 4.2 The Courant–Snyder Parameters
 4.3 Action–Angle Variables
 4.4 Courant–Snyder Parameters in a FODO Beam Line
 4.5 Hill’s Equation
 4.6 Courant–Snyder Parameters and Particle Distribution

5 Coupled Optics
 5.1 Transverse–Longitudinal Coupling
 5.1.1 Dispersion
 5.1.2 Momentum compaction and phase slip
 5.1.3 Synchrotron motion
 5.2 Fully Coupled Motion
 5.3 Dispersion Revisited
 5.4 Examples of Coupled Optics
 5.4.1 Uniform solenoid field
 5.4.2 Flat-beam electron source

6 Linear Imperfections in Storage Rings
 6.1 The Closed Orbit
 6.2 Dipole Field Errors
 6.3 Quadrupole Alignment Errors
 6.4 Focusing Errors
 6.5 Beam-Based Alignment of Quadrupoles
 6.6 Coupling Errors
Contents

7 Effects of Synchrotron Radiation 215
 7.1 Classical Radiation: Radiation Damping 217
 7.2 Quantum Radiation: Quantum Excitation 230
 7.3 Equilibrium Emittance and Lattice Design 237
 7.3.1 Natural emittance in a FODO storage ring 239
 7.3.2 Double-bend achromat 243
 7.3.3 TME lattices and multibend achromats 246
 7.4 Computation of Equilibrium Emittances 250
 7.5 Synchrotron Radiation and Spin Polarisation 258

III Single-Particle Nonlinear Dynamics 263

8 Examples of Nonlinear Effects in Accelerator Beam Lines 265
 8.1 Longitudinal Dynamics in a Bunch Compressor 265
 8.2 Chromaticity in a Linear FODO Beam Line 274
 8.3 Chromaticity in Storage Rings 279

9 Representations of Transfer Maps 287
 9.1 Lie Transformations 289
 9.2 Power Series Map for a Sextupole 296
 9.3 Mixed-Variable Generating Functions 301

10 Symplectic Integrators 309
 10.1 Splitting Methods 310
 10.2 Explicit Symplectic Integrator for s-dependent Fields 319
 10.3 Symplectic Runge–Kutta Integrators 325

11 Methods for Analysis of Single-Particle Dynamics 331
 11.1 A Lie Transformation Example: the –I Transformer 332
 11.2 Canonical Perturbation Theory 335
 11.2.1 Dipole perturbations: closed orbit distortion 343
 11.2.2 Quadrupole perturbations: focusing errors 346
 11.2.3 Skew quadrupole perturbations: coupling 348
 11.2.4 Sextupole perturbations 357
 11.3 Resonances and Dynamic Aperture 360
 11.4 Normal Form Analysis 373
 11.5 A Numerical Method: Frequency Map Analysis 384
IV Collective Effects

12 Space Charge

12.1 The Kapchinsky-Vladimirsky Distribution

12.2 The Envelope Equations for the KV Distribution

12.3 Elliptically Symmetric Non-KV Distributions

12.4 Space-Charge Tune Shifts

12.5 Matching a Continuous Beam to a Solenoid Field

12.6 Longitudinal Dynamics with Space Charge

12.7 Beam-Beam Effects

13 Scattering Effects

13.1 Touschek Effect

13.2 Intrabeam Scattering

13.2.1 Piwinski formulae

13.2.2 Bjorken-Mtingwa formulae

13.2.3 High energy approximation

14 Wake Fields, Wake Functions and Impedance

14.1 Wake Fields in a Resonant Cavity

14.2 Resistive-Wall Wake Fields

14.3 Wake Functions

14.4 Impedance

15 Coherent Instabilities

15.1 Coupled-Bunch Instabilities

15.1.1 Transverse modes

15.1.2 Longitudinal modes

15.2 Potential-Well Distortion

15.3 Coasting Beams: Microwave Instability

15.4 Single-Bunch Instabilities

15.4.1 Head-tail instability

15.4.2 Sacherer's integral equation

15.4.3 Discrete modes: Robinson instability

15.4.4 Mode coupling

Bibliography

Index