Crystal Symmetry, Lattice Vibrations, and Optical Spectroscopy of Solids
A Group Theoretical Approach

Baldassare Di Bartolo
Boston College, USA

Richard C. Powell
University of Arizona, USA
Contents

Preface vii

Part I. Symmetry of Crystals 1

Chapter 1. Introduction 3
 1.1 The Hamiltonian of a Crystalline Solid 3
 1.2 The Adiabatic Approximation 6
 1.3 The Role of Symmetry 7
 1.4 The Symmetries of the Hamiltonian 9
 Reference . 12

Chapter 2. Concepts of Group Theory 13
 2.1 Properties of a Group 13
 2.2 Subgroups, Cosets, and Classes 15
 2.3 Theory of Representations 17
 2.4 Orthogonality Relations 20
 2.5 Characters of a Matrix Representation 23
 2.6 Reduction of a Reducible Representation . . . 25
 2.7 Basis Functions for Irreducible
 Representations 27
 2.8 Direct Product Representations 29
 2.9 The Fundamental Theorem for Functions
 Transforming Irreducibly 31
 2.10 Product Groups and Their
 Representations 34
 2.11 Connection of Quantum Mechanics
 with Group Theory 35
Chapter 3. Crystal Symmetries

3.1 Unit Cells and Space Lattices 41
3.2 Miller Indices 44
3.3 The Crystal Systems 47
 3.3.1 The Four Two-Dimensional Crystal Systems 48
 3.3.2 The Seven Three-Dimensional Crystal Systems 48
3.4 The Bravais Lattices 50
 3.4.1 The Five Bravais Lattices in Two Dimensions 50
 3.4.2 The Fourteen Bravais Lattices in Three Dimensions 53

Chapter 4. Group Theoretical Treatment of Crystal Symmetries 57

4.1 Space Groups 57
4.2 The Crystallographic Point Groups 60
 4.2.1 Two-Dimensional Crystallographic Point Groups 60
 4.2.2 Three-Dimensional Crystallographic Point Groups 61
 4.2.3 Site Groups 65
4.3 The Invariant Subgroup of Primitive Translations: Bravais Lattices 68
4.4 The Compatibility of Rotational and Translational Symmetries and Its Relevance to Space Groups 69
4.5 The Irreducible Representations of a Group of Primitive Translations Brillouin Zones 72
4.6 The Irreducible Representations of Space Groups 77
 4.6.1 Effects of Translational Symmetry 78
 4.6.2 Effects of Rotational Symmetry 79
4.6.3 General Properties of the Irreducible Representations 80
4.6.4 Small Representations for Different Points of the Brillouin Zone 83
4.7 Example I. Symmorphic Group C_{4v}^1 86
4.8 Example II. Nonsymmorphic Group C_{4v}^2 106
References 127

Chapter 5. Scattering of X-Rays by Crystals 129
5.1 Introduction 129
5.2 Scattering from a Single Electron 130
5.3 Scattering from a Single Atom 133
5.4 Scattering from the Atoms in the Unit Cell of a Crystal 136
5.5 Scattering from a Crystal 137
5.6 Interpretation of Laue Equations in Reciprocal Space 141
5.7 Methods of X-Ray Diffraction 143
5.7.1 The Laue Method (see Fig. 5.8a) 143
5.7.2 The Bragg Method (see Fig. 5.8b) 144
5.7.3 The Debye-Scherrer Method (see Fig. 5.8c) 145
References 145

Part II. Lattice Vibrations of Crystals 147

Chapter 6. Lattice Vibrations of Crystals 149
6.1 The Infinite Linear Crystal 149
6.2 The Finite Linear Crystal 154
6.3 Normal Modes of Vibration of a Linear Crystal 157
6.4 Linear Crystal with a Basis 167
6.5 Lattice Vibrations in Three Dimensions 173
6.5.1 The Equations of Motion 173
Part III. Optical Spectroscopy of Crystals 289

Chapter 9. Interaction of Radiation with Matter 291

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 The Classical Radiative Field</td>
<td>292</td>
</tr>
<tr>
<td>9.2 The Quantum Theory of the Radiative Field</td>
<td>301</td>
</tr>
<tr>
<td>9.3 The Hamiltonian of a Charged Particle in an Electromagnetic Field</td>
<td>303</td>
</tr>
</tbody>
</table>
9.4 The Interaction Between a Charged Particle and a Radiative Field 305
9.5 First-Order Processes. Absorption and Emission of Radiation 308
9.6 Second-Order Processes ... 315
 9.6.1 Matrix Element Due to H_1 317
 9.6.2 Matrix Elements Due to H_2 318
 9.6.3 Effective Matrix Element 319
 9.6.4 Transition Rates of Scattering Processes 323

References ... 325

Chapter 10. Optical Spectra of Impurities in Solids I 327

 10.1 Impurities in Crystals .. 328
 10.2 Review of the Theory of Small Vibrations (Classical) 328
 10.3 Harmonic and Anharmonic Relaxation 337
 10.4 Review of the Theory of Small Vibrations (Quantum Mechanical) 341
 10.5 The Effect of Impurities on Lattice Vibrations 346
 10.6 The Franck-Condon Principle 352
 10.7 Absorption and Emission in Crystals 359
 10.8 Purely Electronic (Zero-Phonon) Transitions 362
 10.9 Characteristics of the Zero-Phonon Lines 370
 10.10 Phonon-Assisted Transitions 372
 10.11 Radiative Transitions in the Presence of Localized Vibrations 380
 10.12 Classification of Vibronic Spectra 390

References ... 391

Chapter 11. Optical Spectra of Impurities in Solids II 393

 11.1 Summary of Previous Results 393
 11.2 Deviations from the Franck-Condon Approximation 397
11.3 Deviations from the Adiabatic Approximation. Radiationless Transitions .. 410
11.4 A Simple Model for Laser Crystals: An Effective Hamiltonian ... 413
11.5 Radiative, Vibronic, and Radiationless Transitions of Magnetic Impurities .. 416
11.6 Selection Rules for Vibronic Transitions 426
11.7 Effect of Temperature on the Position and Shape of a Purely Electronic Line .. 427
 11.7.1 Thermal Line Shift .. 428
 11.7.2 Thermal Broadening of Sharp Lines 429
References .. 433

Chapter 12. Interaction of Light with Lattice Vibrations: Infrared Absorption and Inelastic Light Scattering
12.1 General Characteristics of Infrared Absorption by Crystals ... 436
12.2 Infrared Transitions in a Molecular System 436
12.3 Momentum and Energy Conservation in Infrared Absorption ... 438
12.4 Quantum Theory of Infrared Absorption 441
12.5 Reststrahl (One-Phonon) Absorption 451
12.6 Two-Phonon Absorption .. 453
12.7 Selection Rules for Infrared Absorption 457
12.8 The Effect of Impurities on Infrared Absorption Spectra .. 459
12.9 Infrared Absorption in Homopolar Crystals 460
12.10 General Characteristics of Raman Scattering from Crystals ... 468
12.11 Theory of Raman Scattering 471
12.12 Transition Polarizability ... 475
12.13 Energy Scattered in Raman Scattering Experiments .. 480
12.14 Selection Rules for Raman Scattering 483
12.15 The Effect of Impurities on Raman Scattering 485
12.16 Brillouin Scattering ... 486
References .. 490
13. Lattice Vibrations and Lasers 491
 13.1 Nonradiative Transitions 494
 13.2 Single Wavelength Lasers 498
 13.2.1 Optical Transitions in Rare Earth Ion Lasers 499
 13.2.2 Radiationless Decay Processes in Rare Earth Ion Lasers 502
 13.3 Multiple Wavelength Lasers 505
 References 509

Subject Index 511