Linear Algebra and Matrix Analysis for Statistics

Sudipto Banerjee
Professor of Biostatistics
School of Public Health
University of Minnesota, U.S.A.

Anindya Roy
Professor of Statistics
Department of Mathematics and Statistics
University of Maryland, Baltimore County, U.S.A.
Contents

Preface \(\text{ xv}\)

1 Matrices, Vectors and Their Operations \(\text{ 1}\)
- 1.1 Basic definitions and notations \(\text{ 2}\)
- 1.2 Matrix addition and scalar-matrix multiplication \(\text{ 5}\)
- 1.3 Matrix multiplication \(\text{ 7}\)
- 1.4 Partitioned matrices \(\text{ 14}\)
 - 1.4.1 \(2 \times 2\) partitioned matrices \(\text{ 14}\)
 - 1.4.2 General partitioned matrices \(\text{ 16}\)
- 1.5 The “trace” of a square matrix \(\text{ 18}\)
- 1.6 Some special matrices \(\text{ 20}\)
 - 1.6.1 Permutation matrices \(\text{ 20}\)
 - 1.6.2 Triangular matrices \(\text{ 22}\)
 - 1.6.3 Hessenberg matrices \(\text{ 24}\)
 - 1.6.4 Sparse matrices \(\text{ 26}\)
 - 1.6.5 Banded matrices \(\text{ 27}\)
- 1.7 Exercises \(\text{ 29}\)

2 Systems of Linear Equations \(\text{ 33}\)
- 2.1 Introduction \(\text{ 33}\)
- 2.2 Gaussian elimination \(\text{ 34}\)
- 2.3 Gauss-Jordan elimination \(\text{ 42}\)
- 2.4 Elementary matrices \(\text{ 44}\)
- 2.5 Homogeneous linear systems \(\text{ 48}\)
- 2.6 The inverse of a matrix \(\text{ 51}\)
- 2.7 Exercises \(\text{ 61}\)
9 Revisiting Linear Equations
 9.1 Introduction
 9.2 Null spaces and the general solution of linear systems
 9.3 Rank and linear systems
 9.4 Generalized inverse of a matrix
 9.5 Generalized inverses and linear systems
 9.6 The Moore-Penrose inverse
 9.7 Exercises

10 Determinants
 10.1 Introduction
 10.2 Some basic properties of determinants
 10.3 Determinant of products
 10.4 Computing determinants
 10.5 The determinant of the transpose of a matrix—revisited
 10.6 Determinants of partitioned matrices
 10.7 Cofactors and expansion theorems
 10.8 The minor and the rank of a matrix
 10.9 The Cauchy-Binet formula
 10.10 The Laplace expansion
 10.11 Exercises

11 Eigenvalues and Eigenvectors
 11.1 The Eigenvalue equation
 11.2 Characteristic polynomial and its roots
 11.3 Eigenspaces and multiplicities
 11.4 Diagonalizable matrices
 11.5 Similarity with triangular matrices
 11.6 Matrix polynomials and the Caley-Hamilton Theorem
 11.7 Spectral decomposition of real symmetric matrices
 11.8 Computation of eigenvalues
 11.9 Exercises
 CONTENTS

12 Singular Value and Jordan Decompositions 371
 12.1 Singular value decomposition 371
 12.2 The SVD and the four fundamental subspaces 379
 12.3 SVD and linear systems 381
 12.4 SVD, data compression and principal components 383
 12.5 Computing the SVD 385
 12.6 The Jordan Canonical Form 389
 12.7 Implications of the Jordan Canonical Form 397
 12.8 Exercises 399

13 Quadratic Forms 401
 13.1 Introduction 401
 13.2 Quadratic forms 402
 13.3 Matrices in quadratic forms 405
 13.4 Positive and nonnegative definite matrices 411
 13.5 Congruence and Sylvester's Law of Inertia 419
 13.6 Nonnegative definite matrices and minors 423
 13.7 Some inequalities related to quadratic forms 425
 13.8 Simultaneous diagonalization and the generalized eigenvalue problem 434
 13.9 Exercises 441

14 The Kronecker Product and Related Operations 445
 14.1 Bilinear interpolation and the Kronecker product 445
 14.2 Basic properties of Kronecker products 446
 14.3 Inverses, rank and nonsingularity of Kronecker products 453
 14.4 Matrix factorizations for Kronecker products 455
 14.5 Eigenvalues and determinant 460
 14.6 The vec and commutator operators 461
 14.7 Linear systems involving Kronecker products 466
 14.8 Sylvester's equation and the Kronecker sum 470
 14.9 The Hadamard product 472
 14.10 Exercises 480
15 Linear Iterative Systems, Norms and Convergence

15.1 Linear iterative systems and convergence of matrix powers 483
15.2 Vector norms 485
15.3 Spectral radius and matrix convergence 489
15.4 Matrix norms and the Gerschgorin circles 491
15.5 The singular value decomposition—revisited 499
15.6 Web page ranking and Markov chains 503
15.7 Iterative algorithms for solving linear equations 511
 15.7.1 The Jacobi method 512
 15.7.2 The Gauss-Seidel method 513
 15.7.3 The Successive Over-Relaxation (SOR) method 514
 15.7.4 The conjugate gradient method 514
15.8 Exercises 517

16 Abstract Linear Algebra

16.1 General vector spaces 521
16.2 General inner products 528
16.3 Linear transformations, adjoint and rank 531
16.4 The four fundamental subspaces—revisited 535
16.5 Inverses of linear transformations 537
16.6 Linear transformations and matrices 540
16.7 Change of bases, equivalence and similar matrices 543
16.8 Hilbert spaces 547
16.9 Exercises 552

References 555

Index 559