Handbook of Vehicle Suspension Control Systems

Edited by Honghai Liu, Huijun Gao and Ping Li

The Institution of Engineering and Technology
Contents

Preface xi

1 State-of-the-art of vehicle intelligent suspension control system 1
 Xiaomin Dong
 Abstract 1
 1.1 Introduction 1
 1.2 Evaluation criterion of vehicle suspension performance 4
 1.2.1 Ride comfort 5
 1.2.2 Road holding 5
 1.3 Modeling of vehicle suspension system 5
 1.3.1 Road model 6
 1.3.2 Intelligent quarter-car model 6
 1.3.3 Intelligent half-car model 8
 1.3.4 Intelligent full-vehicle model 10
 1.3.5 Other nonlinear vehicle dynamic model 11
 1.3.6 Nonlinear multibody dynamic model 14
 1.3.7 Nonlinear uncertainty modeling 15
 1.3.8 Nonlinear dynamic model with time delay 16
 1.3.9 Nonlinear dynamics model with fault 17
 1.3.10 The modeling of actuator 18
 1.4 Control strategies 22
 1.4.1 Linear control strategies 24
 1.4.2 Nonlinear control strategies 24
 1.4.3 Uncertainty control methods 25
 1.4.4 Time delay control methods 26
 1.4.5 Fault-tolerant control method 27
 1.5 The method of validation 29
 1.6 Final remarks and conclusions 31
Acknowledgments 33
References 33

2 Intelligence-based vehicle active suspension adaptive control systems 39
 Jiangtao Cao, Ping Li and Honghai Liu
 Abstract 39
 2.1 Introduction 39
2.2 Background
 2.2.1 Active suspension system linear models and control 43
 2.2.2 Nonlinearity and unmodeling dynamic description of active suspension system 48

2.3 Adaptive fuzzy control 50

2.4 Adaptive fuzzy sliding-mode control 52
 2.4.1 Alleviating SMC chattering 53
 2.4.2 FL controller complementary to SMC for system nonlinearity and uncertainty 55

2.5 Adaptive neural network control 56

2.6 Genetic algorithm-based adaptive optimization and control 58

2.7 Adaptive control integration 59
 2.7.1 Adaptive neuro-fuzzy control 59
 2.7.2 Adaptive genetic-based optimal fuzzy control 60
 2.7.3 GA–NN combined control 62

2.8 Concluding remarks 62

Acknowledgments 63

References 63

3 Robust active control of an integrated suspension system 69
Haiping Du, James Lam, Weihua Li and Nong Zhang

Abstract 69

3.1 Introduction 69

3.2 Uncertain integrated system modelling 71

3.3 Robust control system design 75
 3.3.1 Control objectives 75
 3.3.2 Robust controller design 77
 3.3.3 Force tracking control of electrohydraulic actuators 82

3.4 Numerical simulations 83

3.5 Conclusions 90

Acknowledgements 90

Appendix 91

References 94

4 An interval type-2 fuzzy controller for vehicle active suspension systems 99
Jiangtao Cao, Ping Li and Honghai Liu

Abstract 99

4.1 Introduction 99

4.2 A nonlinear active suspension system 101

4.3 The interval type-2 T–S fuzzy control system 103
 4.3.1 The general T–S fuzzy model and fuzzy control system 104
 4.3.2 The interval type-2 T–S fuzzy control system 105
 4.3.3 The proposed IT2 T–S fuzzy control system 107
4.4 Stability analysis of the IT2 T–S fuzzy control system
4.5 Simulation examples
 4.5.1 A numerical example
 4.5.2 A half-vehicle active suspension system
4.6 Concluding remarks
References

5 Active control for actuator uncertain half-car suspension systems
Hongyi Li and Honghai Liu
Abstract
5.1 Introduction
5.2 Problem formulation
5.3 Main results
5.4 Simulation results
5.5 Conclusion
References

6 Active suspension control with finite frequency approach
Weichao Sun, Huihui Pan, Pinchao Wang and Huijun Gao
Abstract
6.1 Introduction
6.2 Problem formulation
6.3 State feedback controller design
6.4 Dynamic output feedback controller design
 6.4.1 Finite frequency case
 6.4.2 Entire frequency case
6.5 Simulation
 6.5.1 State feedback case
 6.5.2 Dynamic output feedback case
6.6 Concluding remarks
References

7 Fault-tolerant control for uncertain vehicle suspension systems via fuzzy control approach
Hongyi Li and Honghai Liu
Abstract
7.1 Introduction
7.2 Problem formulation
7.3 Fault-tolerant fuzzy controller design
7.4 Simulation results
7.5 Conclusions
Appendix
References
8 H_{∞} fuzzy control of suspension systems with actuator saturation

Dounia Saifia, Mohammed Chadli and Salim Labiod

Abstract

8.1 Introduction
8.2 Suspension systems model
8.2.1 Active quarter-car suspension model
8.2.2 Half-car suspension model
8.2.3 Full-car suspension model
8.3 Takagi–Sugeno fuzzy model of suspension systems
8.3.1 Takagi–Sugeno representation of active quarter-car suspension
8.3.2 Takagi–Sugeno representation of active half-car suspension
8.3.3 Takagi–Sugeno representation of active full-car suspension
8.4 Validation of Takagi–Sugeno fuzzy model
8.5 Actuator saturation
8.5.1 Types of saturation
8.5.2 Modelling of saturation effect
8.5.3 Saturated control and constrained control
8.6 Quadratic stabilization of Takagi–Sugeno fuzzy model
8.6.1 Convex analysis and linear matrix inequalities
8.6.2 Stability in the sense of Lyapunov
8.6.3 Attraction region
8.6.4 Quadratic stabilization via PDC control
8.7 H_{∞} approach
8.8 Analysis of PDC control with external disturbances and actuator saturation
8.8.1 Constrained control
8.8.2 Saturated control
8.8.3 Optimization of the attraction region
8.9 Control design for a quarter-car active suspension system
8.10 Conclusion
References

9 Design of sliding mode controller for semi-active suspension systems with magnetorheological dampers

Shigehiro Toyama, Makoto Yokoyama and Fujio Ikeda

Abstract

9.1 Introduction
9.2 Control of semi-active suspension systems with MR dampers
References
Contents

9.2.1 Variable orifice damper 250
9.2.2 MR damper 252
9.3 Model-following sliding mode controller for semi-active suspension systems 255
9.3.1 System model and problems 255
9.3.2 Sliding mode controller 257
9.3.3 Simulation results 259
9.4 Sliding mode controller with describing function method 261
9.4.1 Problem formulation 262
9.4.2 Integral sliding mode control 263
9.4.3 Redesign of relay input with describing function method 265
9.4.4 Simulation conditions 266
9.4.5 Accuracy of limit cycle of switching function 267
9.4.6 Improvement of deterioration caused by passivity constraint 268
9.4.7 Verification of robustness against parameter variation 269
9.5 VSS observer of semi-active suspension systems 272
9.5.1 Plant 273
9.5.2 Problem formulation 274
9.5.3 Design of VSS observer 275
9.5.4 Numerical simulations 278

References 283

10 Joint design of controller and parameters for active vehicle suspension 287
Wei Zhan, Qingrui Zhang, Yinan Liu and Huijun Gao
Abstract 287
10.1 Overview 287
10.2 Problem formulation 289
10.3 Joint design of the system 290
10.4 Simulation results 293
10.5 Conclusion 299
Acknowledgement 300
References 300

11 System approach to vehicle suspension system control in CAE environment 303
Vladimir M. Popović and Dragan D. Stamenković
Abstract 303
11.1 Introduction 303
11.2 Classification of mechatronic suspension systems 304
11.3 Design development process 306
11.4 Active suspension system modeling 308
11.4.1 Model of the system in state-space 309
11.4.2 Synthesis of active suspension digital system 313
11.4.3 Active suspension control using PID controller 313
11.4.4 Active suspension control using neural network 318
11.5 Conclusions 323
References 324

12 Vibration control of vehicle engine-body systems with time delay: an LMI approach 327
Hamid Reza Karimi
Abstract 327
12.1 Introduction 327
12.2 The vehicle engine-body system 330
12.3 Problem formulation 335
12.4 Main results 336
12.4.1 State-feedback control design 337
12.4.2 Output-feedback control design 344
12.5 Simulation results 346
12.6 Conclusion 351
References 353

13 Frequency domain analysis and design of nonlinear vehicle suspension systems 357
Yue Chen, Xingjian Jing and Li Cheng
Abstract 357
13.1 Introduction 357
13.2 System model and the output frequency response function (OFRF) method 360
13.2.1 System model 360
13.2.2 Determination of the system OFRF 362
13.2.3 Optimization and system analysis 366
13.2.4 Conclusion 371
13.3 Comparative studies 372
13.3.1 Existing nonlinear damping characteristics 372
13.3.2 Damping characteristics designed via the OFRF-based analysis method 374
13.3.3 Comparative studies 376
13.3.4 Dynamic model verification 385
13.3.5 Conclusion 386
13.4 Application on a dynamic vehicle model 387
13.4.1 Dynamic vehicle model 387
13.4.2 Simulation study 389
13.4.3 Summary 395
13.5 Conclusion and future work 396
References 397

Index 401