1. INTRODUCTION 1

1.1 Overview of Biological Reactions 1
 1.1.1 Submerged liquid fermentation (SLF) 1
 1.1.2 Solid-state fermentation (SSF) 3

1.2 Elements in Bioreactor Design 4

1.3 Rate Expression in Biological Systems 5
 1.3.1 Enzymatic reactions 6
 1.3.2 Cellular reactions 8

1.4 Basic Concept of Energy Transfer 10
 1.4.1 Metabolic energy 11
 1.4.2 Factors affecting performance in bioreactors 11
 1.4.3 Effect of agitation 11
 1.4.4 Effect of shear 11
 1.4.5 Effect of modes of heat transfer 11

1.5 Basic Concept of Mass Balance 12

Exercises 12
References 13
Appendix 1 16
References to Appendix 1 17

2. UNDERSTANDING OF BIOREACTORS 18

2.1 What is a Bioreactor? 18
2.2 Why Should We Study Bioreactors? 18
2.3 Development of Bioreactors 20
2.4 Purpose and Importance of Bioreactors 23
 2.4.1 Necessary functions of bioreactors 23
 2.4.2 Requirements for a bioreactor 24
 2.4.3 Major components and its purposes 24
 2.4.4 Additional information on important components 25
2.5 Other Bioreactor Configurations 33
2.6 Bioreactor Development for Solid-State Fermentation (SSF) 39
 2.6.1 Necessary features of a typical bioreactor used in SSF 39
2.7 Classification of Bioreactors 40
 2.7.1 Classification of bioreactors in SLF 41
 2.7.2 Classification of bioreactors in SSF 50
2.8 Bioreactors for Animal Cell Cultivation 59
 2.8.1 Development of bioreactors 61
 2.8.2 Classification of bioreactors used for animal cell culture 66
2.9 Bioreactors for Plant Cell Culture 72
 2.9.1 Reactors for suspension culture 73
2.10 Bioreactors for Immobilized System 73
2.11 Sterilization Bioreactors 74
2.12 Bioreactors Used in Different Areas of Environmental Control and Management 75
2.13 Bioreactors Used for Combined Reactions and Separation 80
 Exercises 81
 References 82
 Further Reading 84

3. BIOREACTOR OPERATION 86

3.1 Introduction 86
3.2 Common Operations of Bioreactor 86
 3.2.1 Setting up of bioreactor for submerged liquid fermentation (SLF) 86
 3.2.2 Inoculum development for bioreactor operation 91
3.3 Selection/Identification of Other Common Factors Necessary for Smooth Operation of Bioreactors 94
3.4 Spectrum of Basic Bioreactor Operations 104
 3.4.1 Experimental laboratory bioreactors 106
 3.4.2 Microbial free cells and cellular reactions in basic bioreactor 109
3.5 Reactor Operation for Immobilized Systems 134
3.6 Operation of Animal Cell Bioreactors 136
 3.6.1 Methods of preparation of culture of animal cells 137
 3.6.2 Sources of contamination 137
 3.6.3 Safety precautions for animal cell cultures 137
 3.6.4 Basic precautions 138
 3.6.5 Batch reactor operation 138
 3.6.6 Continuous flow (CHEMOSTAT) culture operation 138
 3.6.7 Perfusion culture operation 139
 3.6.8 Operation of hollow fiber bioreactor for hybridoma culture 140
3.7 Operation of Bioreactors for Plant Cell Culture 143
3.8 Reactors for Waste Management 144

Exercises 144
References 146
Appendix 3 149

4. BIOCHEMICAL ASPECT OF BIOREACTOR DESIGN 150

4.1 Introduction 150
4.2 Organization of this Chapter 151
 4.2.1 General growth reaction 151
 4.2.2 Rate laws 152
 4.2.3 Temperature dependence of rate law for growth 153
 4.2.4 Stoichiometry 154
 4.2.5 Application of yield factors 155
 4.2.6 The mass balance 157
 4.2.7 General energy balance in bioreactors 158

SECTION A: BIOREACTORS FOR SUBMERGED LIQUID FERMENTATION OF MICROBIAL CELLS 160
 Part 1: Batch Bioreactors 160

4.3 Introduction 160
 4.3.1 Calculation of total batch time 161
 4.3.2 Calculation of batch reaction time from ideal system 162
 4.3.3 Calculation of t_r for simultaneous synthesis of cells and products 166
 4.3.4 Non-ideality in batch bioreactor 171
 4.3.5 Quantitative evaluation of batch processes 187

SECTION A: BIOREACTORS FOR SUBMERGED LIQUID FERMENTATION OF MICROBIAL CELLS 190
 Part 2: Continuous Flow Bioreactors 190

4.4 Introduction 190
 4.4.1 Purpose of continuous flow reactors 191
 4.4.2 Differences between turbidostat and chemostat operations 192
 4.4.3 Ideal CFSTBR–Chemostat 192
 4.4.4 Application of single stage CFSTBR 196
 4.4.5 Rate of output of cell mass in a chemostat 197
 4.4.6 Mean residence time (τ) 201
 4.4.7 Comparison of batch bioreactor and single stage CFSTBR 204
 4.4.8 Washout condition 206

4.5 Plug Flow Tubular Reactor (PFTR) 209
 4.5.1 Comparison of ideal mixed flow (batch and CFSTBR) and plug flow tubular reactors 211
4.6 Recycle Bioreactors
- **4.6.1 Objectives** 213
- **4.6.2 Recycling in biological reactions** 213
- **4.6.3 Analysis of recycle reactors** 214

SECTION A: BIOREACTORS FOR SUBMERGED FERMENTATION OF MICROBIAL CELLS
- **Part 3: Combination of Bioreactors** 221

4.7 Combination of Bioreactors
- **4.7.1 Combination of continuous flow bioreactors** 222
- **4.7.2 Classification of multistage bioreactors** 223
- **4.7.3 Analysis of CFSTBRs in series with single stream** 224

SECTION A: BIOREACTORS FOR SUBMERGED LIQUID FERMENTATION OF MICROBIAL CELLS
- **Part 4: Semi-Continuous Bioreactors** 232

4.8 Semi-continuous Bioreactors
- **4.8.1 A few definitions** 233
- **4.8.2 Analysis of semi-batch reactor** 234
- **4.8.3 Fed-batch bioreactors** 237

SECTION B: BIOREACTORS FOR ENZYME REACTIONS AND IMMobilIZED CELLS
- **4.9 Introduction** 240

4.10 Input to Kinetic Modeling of Enzyme Reactors
- **4.10.1 Ideal reactors** 241
- **4.10.2 Analysis of ideal enzyme reactors: Substrate inhibition** 247
- **4.10.3 Analysis of ideal enzyme reactors: Product inhibition** 248
- **4.10.4 Steps for enzyme reactor design** 249
- **4.10.5 Immobilized enzyme reactions** 250

Example Problems 256

Exercises 258

References 260

5. ANALYSIS OF NON-IDEOlAL BEHAVIOR IN BIOREACTORS 263

5.1 Introduction 263

5.2 Non-ideal Parameters
- **5.2.1 In CFSTBR** 264

5.3 Residence Time Distribution – Some Aspects of Macro Mixing
- **5.3.1 Ways to characterize RTD** 271

5.4 Some Exercise for RTD of Ideal Systems (Ideal Bioreactors) 275

5.5 Moments of the Distribution 276
5.6 \(E(t) \) or \(F(t) \) and the Bioreactor Design 278
 5.6.1 How to identify non-idealities in the system? 278
 5.6.2 Assessment of non-ideality 278
5.7 Models for Non-ideal Flow 279
 5.7.1 Single parameter models 279
 5.7.2 The purpose of the parameters 280
 5.7.3 Models for non-ideal tubular reactors 280
 5.7.4 Models for non-ideal CFSTBRs 287
5.8 Multi Parameter Models 290
5.9 Application of RTD Based Models to Non-Ideal Bioreactors 291
5.10 Drawbacks of Classical RTD Measurements 296
 5.10.1 Macro-mixing 296
 5.10.2 Mixing time 297
 5.10.3 Micro mixing—Another factor for non-ideality in the bioreactor 298
5.11 Transient Behavior in Bioreactors 299
 5.11.1 Classification of continuous change in environmental factors 299
 5.11.2 Characterization of transient state 300
 5.11.3 Stability and dynamic behavior of bioreactor 302
 5.11.4 Stability and eigen values 303
 5.11.5 Examples 303
5.12 Stability Analysis for Continuous Flow Bioreactor with Substrate Inhibition 314
5.13 Phase Plane Analysis 315
 5.13.1 Generalized phase-plane behavior 316
 5.13.2 Development of phase plane diagram for a bioreactor 316
5.14 The Bifurcation Analysis 321
 5.14.1 Drawbacks of dynamic analysis 321
 5.14.2 What is bifurcation? 321
 5.14.3 Different terms used in bifurcation analysis pertaining to bioreactor analysis 321
 5.14.4 Types of local bifurcation 323
Exercises 325
References 326

6. BIOREACTOR MODELING 329
6.1 Model—What is It? 329
 6.1.1 Use of models 330
 6.1.2 Classification of models 330
6.2 Definition of Lumped and Distributed Parameter Models 331
6.3 Introduction to a Few Terminologies and Theorems 331
6.4 Modeling Principles 332
6.5 Steps in Modeling 333
8.8 Consistency Checks on Measurements 380
8.9 Adaptive Online Optimizing Control of Bioreactor System
 8.9.1 Online optimization control for bioreactor 386
Exercises 388
References 388
Appendix 8 390

9. CASE STUDIES 392

9.1 Introduction 392

9.2 Design of Packed Bed Bioreactor
 9.2.1 Design of a packed bed reactor for a bio-film growth on support system 392
 9.2.2 Specific design 393
 9.2.3 Design of packed bed bioreactor packed with immobilized whole cell catalysts 396

9.3 Airlift Bioreactors
 9.3.1 Classification of airlift reactors 400
 9.3.2 Main design criterion 401
 9.3.3 Type of analysis 401
 9.3.4 What are the parameters to measure? 401

9.4 Hollow Fiber Bioreactor (HFRB) 405

9.5 Plant Cell Bioreactor
 9.5.1 Bioreactor considerations 409
 9.5.2 Classes of bioreactors for plant cell growth 411
 9.5.3 Design of bioreactor 413

9.6 Design of Bioreactors for Solid State Fermentation (SSF) 414

9.7 Mammalian Cell Bioreactor Design
 9.7.1 Fermentor balancing for semi-continuous multi-tank mammalian cell culture process 416

Exercises 417
References 419
Appendix 9 420

10. APPLICATION OF COMPUTATIONAL FLUID DYNAMICS IN BIOREACTOR ANALYSIS AND DESIGN 421

10.1 Introduction
 10.1.1 Modeling approaches 422
 10.1.2 Dimensionality of simulation 422
 10.1.3 Difference between Lagrangian and Eulerian approaches 423

10.2 Fluid Dynamic Modeling
 10.2.1 Euler-Lagrange approach 423
10.2.2 Eulerian-Eulerian approach 423
10.2.3 Model equations and averaging methods 424
10.2.4 Hydrodynamic parameters 424
10.2.5 Hydrodynamic model 424
10.2.6 Turbulence modeling 429

10.3 Simulation 432
10.3.1 Computational domain 432
10.3.2 Geometry grid generation 433
10.3.3 Initial conditions 433
10.3.4 Boundary conditions 434
10.3.5 Evaluation of design parameters 436

Exercises 437
References 437
Appendix 10 440

11. SCALE-UP OF BIOREACTORS 445

11.1 Introduction 445
11.2 Additional Scale-Up Problems in Bioreactors 446
11.3 Criteria of Scale-Up 446
11.3.1 Single constant criteria 446
11.3.2 Combination of criteria 447

11.4 Similarity Criteria 448
11.4.1 Scale-up based on constant power per unit volume 448
11.4.2 Scale-up based on \(K_L a \) 449
11.4.3 Constant mixing time 449

11.5 Scale-Up Methods 450
11.6 Generalized Approaches to Scale-Up in Combination of Methods 458
11.6.1 Hubbard method (1987) 458
11.6.2 Method of Wang et al. (1979) 459
11.6.3 Ettler's method (1992) 459
11.6.4 Other methods 459

11.7 Examples 460
Exercises 463
References 463

12. MECHANICAL ASPECTS OF BIOREACTOR DESIGN 465

12.1 Introduction 465
12.2 Requirements for Construction of a Bioreactor 465
12.3 Guidelines for Bioreactor Design 466
12.3.1 Preferred materials for bioreactor design and fabrication 466
12.3.2 Welding techniques 466
12.4 Bioreactor Vessels
 12.4.1 Geometry of reactor vessel 468
 12.4.2 Components in bioreactor vessel 469
 12.4.3 Size of the vessel 469
 12.4.4 The design procedure of vessel wall of bioreactor 470
 12.4.5 Design of flange 472
 12.4.6 Design of shaft 474
 12.4.7 Design of pin key/sunk key 476

12.5 Agitator Assembly
 12.5.1 Drive configuration 478
 12.5.2 Types of stirrer assembly 478
 12.5.3 Types of agitators 479

Exercises 484
References 484
Appendix 12 486

Index 487