THE BETHE WAVEFUNCTION

MICHEL GAUDIN

Translated from the French original 'La fonction d'onde de Bethe' (1983)
by Jean-Sébastien Caux
# Contents

**Foreword**  
*page ix*

**Translator's note**  
x

**Introduction**  
xi

## 1 The chain of spin-1/2 atoms

1.1 Model for a one-dimensional metal  
1  
1.2 Bethe's method  
3  
1.3 Parameters and quantum numbers  
8  
1.4 Asymptotic positioning of complex momenta  
15  
1.5 State classification and counting  
19

## 2 Thermodynamic limit of the Heisenberg–Ising chain

2.1 Results for the ground state and elementary excitations  
27  
2.2 Calculation method for the elementary excitations  
30  
2.3 Thermodynamics at nonzero temperature: Energy and entropy functionals ($\Delta \geq 1$)  
33  
2.4 Thermodynamics at nonzero temperature: Thermodynamic functions  
37  
Appendix A  
42

## 3 Thermodynamics of the spin-1/2 chain: Limiting cases

3.1 The Ising limit  
44  
3.2 The $T = \pm 0$ limits  
46  
3.3 $T = \infty$ limit  
52

## 4 $\delta$-Interacting bosons

4.1 The elementary symmetric wavefunctions  
54  
4.2 Normalization of states in the continuum  
56  
4.3 Periodic boundary conditions  
63  
4.4 Thermodynamic limit  
67  
Appendix B  
70
## Contents

<table>
<thead>
<tr>
<th>Appendix C</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix D</td>
<td>77</td>
</tr>
</tbody>
</table>

5 Bethe wavefunctions associated with a reflection group  
5.1 Bosonic gas on a finite interval  
5.2 The generalized kaleidoscope  
5.3 The open chain  
Appendix E  

6 Continuum limit of the spin chain  
6.1 \(\delta\)-Interacting bosons and the Heisenberg–Ising chain  
6.2 Luttinger and Thirring models  
6.3 Massive Thirring model  
6.4 Diagonalization of \(H_\mathcal{F}\)  

7 The six-vertex model  
7.1 The ice model  
7.2 The transfer matrix  
7.3 Diagonalization  
7.4 The free energy  
Appendix F  
Appendix G  

8 The eight-vertex model  
8.1 Definition and equivalences  
8.2 The transfer matrix and the symmetries of the self-dual model  
8.3 Relation of the XYZ Hamiltonian to the transfer matrix  
8.4 One-parameter family of commuting transfer matrices  
8.5 A representation of the symmetric group \(\pi_N\)  
8.6 Diagonalization of the transfer matrix  
8.7 The coupled equations for the spectrum  
Appendix H  
Appendix I  

9 The eight-vertex model: Eigenvectors and thermodynamics  
9.1 Reduction to an Ising-type model  
9.2 Equivalence to a six-vertex model  
9.3 The thermodynamic limit  
9.4 Various results on the critical exponents  

10 Identical particles with \(\delta\)-interactions  
10.1 The Bethe hypothesis  
10.2 Yang’s representation
## Contents

10.3 Ternary relations algebra and integrability 211
10.4 On the models of Hubbard and Lai 220

11 Identical particles with δ-interactions: General solution for two internal states 223
   11.1 The spin-1/2 fermion problem 223
   11.2 The operatorial method 231
   11.3 Sketch of the original solution of the fermion problem 233
   11.4 On the thermodynamic limit of the fermion system in the vicinity of its ground state 236
   Appendix J 244
   Appendix K 249
   Appendix L 250

12 Identical particles with δ-interactions: General solution for n components and limiting cases 253
   12.1 The transfer matrix $Z(k)$ in a symmetry-adapted basis 253
   12.2 Recursive diagonalization of matrix $Z$ 257
   12.3 Zero coupling limit 264

13 Various corollaries and extensions 268
   13.1 A class of completely integrable spin Hamiltonians 268
   13.2 Other examples of integrable systems 275
   13.3 Ternary relation and star–triangle relation 279
   13.4 Ternary relation with $\mathbb{Z}_5$ symmetry 282
   13.5 Ternary relations with $\mathbb{Z}_2^q$ symmetry 287
   13.6 Notes on a system of distinguishable particles 292
   Appendix M 294
   Appendix N 298

14 On the Toda chain 301
   14.1 Definition 301
   14.2 Bäcklund transformation 301
   14.3 The solitary wave 303
   14.4 Complete integrability 304
   14.5 The $M$-soliton solution for the infinite chain 307
   14.6 The quantum chain 308
   14.7 The integral equation for the eigenfunctions 310
   14.8 Ternary relations and action–angle variables 311

References 314

Index 323