QUANTUM THEORY OF TUNNELING

2nd Edition

MOHSEN RAZAVY
University of Alberta, Canada
Contents

Preface to the Second Edition vii
Preface to the First Edition ix
Introduction xix

1 A Brief History of Quantum Tunneling

2 Some Basic Questions Concerning Quantum Tunneling
2.1 Tunneling and the Uncertainty Principle 9
2.2 Asymptotic Form of Decay After a Very Long Time 11
2.3 Initial Stages of Decay 12
2.4 Solvable Models Exhibiting Different Stages of Decay 17

3 Simple Solvable Problems
3.1 Confining Double-Well Potentials 33
3.2 Tunneling Through Barriers of Finite Extent 38
3.3 Tunneling Through a Series of Identical Rectangular Barriers 49
3.4 Eckart’s Potential 54
3.5 Double-Well Morse Potential 57
3.6 A Solvable Asymmetric Double-Well Potential 60

4 Time-Dependence of the Wave Function in One-Dimensional Tunneling
4.1 Time-Dependent Tunneling for a δ-Function Barrier 65
4.2 An Asymptotic Expression in Time for the Transmission of a Wave Packet 73

5 Semiclassical Approximations
5.1 The WKB Approximation 78
5.2 Method of Miller and Good 88
5.3 Calculation of the Splitting of Levels in a Symmetric Double-Well Potential Using WKB Approximation 97
5.4 Energy Eigenvalues for Motion in a Series of Identical Barriers 100
5.5 Tunneling in Momentum Space 103
5.6 The Bremmer Series 105
Contents

6 Generalization of the Bohr-Sommerfeld Quantization Rule and Its Application to Quantum Tunneling 110

6.1 The Bohr-Sommerfeld Method for Tunneling in Symmetric and Asymmetric Wells 114

6.2 Numerical Examples 117

7 Gamow’s Theory, Complex Eigenvalues, and the Wave Function of a Decaying State 120

7.1 Solution of the Schrödinger Equation with Radiating Boundary Condition 120

7.2 Green’s Function for the Time-Dependent Schrödinger Equation with Radiating Boundary Conditions 124

7.3 The Time Development of a Wave Packet Trapped Behind a Barrier 133

7.4 Method of Auxiliary Potential 137

7.5 Determination of the Wave Function of a Decaying State 143

7.6 Some Instances Where WKB Approximation and the Gamow Formula Do Not Work 154

8 Tunneling in Symmetric and Asymmetric Local Potentials and Tunneling in Nonlocal and Quasi-Solvable Barriers 159

8.1 Tunneling in Double-Well Potentials 160

8.2 Tunneling When the Barrier is Nonlocal 165

8.3 Tunneling in Separable Potentials 169

8.4 Quasi-Solvable Examples of Symmetric and Asymmetric Double-Wells 171

8.5 Gel’fand-Levitan Method 174

8.6 Darboux’s Method 176

8.7 Optical Potential Barrier Separating Two Symmetric or Asymmetric Wells 178

9 Classical Descriptions of Quantum Tunneling 186

9.1 Coupling of a Particle to a System with Infinite Degrees of Freedom 186

9.2 Classical Trajectories with Complex Energies and Quantum Tunneling 192

10 Tunneling in Time-Dependent Barriers 198

10.1 Multi-Channel Schrödinger Equation for Periodic Potentials 199

10.2 Tunneling Through an Oscillating Potential Barrier 201

10.3 Separable Tunneling Problems with Time-Dependent Barriers 210

10.4 Penetration of a Particle Inside a Time-Dependent Potential Barrier 217
11 Decay Width and the Scattering Theory 221

11.1 One-Dimensional Scattering Theory and Escape from a Potential Well ... 222

11.2 Scattering Theory and the Time-Dependent Schrödinger Equation ... 230

11.3 An Approximate Method of Calculating the Decay Widths ... 235

11.4 Time-Dependent Perturbation Theory Applied to the Calculation of Decay Widths of Unstable States 240

11.5 Early Stages of Decay via Tunneling .. 244

11.6 An Alternative Way of Calculating the Decay Width Using the Second Order Perturbation Theory 246

11.7 Tunneling Through Two Barriers ... 249

11.8 R-matrix Formulation of Tunneling Problems .. 253

11.9 Decay of the Initial State and the Jost Function ... 258

12 The Method of Variable Reflection Amplitude Applied to Solve Multichannel Tunneling Problems 267

12.1 Mathematical Formulation .. 268

12.2 Variable Partial Wave Phase Method for Central Potentials ... 275

12.3 Matrix Equations and Semi-classical Approximation for Many-Channel Problems ... 277

13 Path Integral and Its Semiclassical Approximation in Quantum Tunneling 284

13.1 Application to the S-Wave Tunneling of a Particle Through a Central Barrier .. 288

13.2 Method of Euclidean Path Integral .. 291

13.3 Other Applications of the Path Integral Method in Tunneling .. 296

13.4 Complex Time, Path Integrals and Quantum Tunneling .. 302

13.5 Path Integral and the Hamilton-Jacobi Coordinates .. 305

13.6 Path Integral Approach to Tunneling in Nonlocal Barriers ... 308

13.7 Remarks About the Semiclassical Propagator and Tunneling Problem .. 313

14 Heisenberg’s Equations of Motion for Tunneling 318

14.1 The Heisenberg Equations of Motion for Tunneling in Symmetric and Asymmetric Double-Wells 319

14.2 Heisenberg’s Equations for Tunneling in a Symmetric Double-Well .. 325

14.3 Heisenberg’s Equations for Tunneling in an Asymmetric Double-Well ... 326

14.4 Tunneling in a Potential Which is the Sum of Inverse Powers of the Radial Distance .. 327

14.5 Klein’s Method for the Calculation of the Eigenvalues of a Confining Double-Well Potential 333
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6</td>
<td>Finite Difference Method for Tunneling in Confining Potentials</td>
<td>340</td>
</tr>
<tr>
<td>14.7</td>
<td>Finite Difference Method for One-Dimensional Tunneling</td>
<td>343</td>
</tr>
<tr>
<td>15</td>
<td>Wigner Distribution Function in Quantum Tunneling</td>
<td>349</td>
</tr>
<tr>
<td>15.1</td>
<td>Wigner Distribution Function and Quantum Tunneling</td>
<td>353</td>
</tr>
<tr>
<td>15.2</td>
<td>Wigner Trajectory for Tunneling in Phase Space</td>
<td>356</td>
</tr>
<tr>
<td>15.3</td>
<td>Entangled Classical Trajectories</td>
<td>361</td>
</tr>
<tr>
<td>15.4</td>
<td>Wigner Distribution Function for an Asymmetric Double-Well</td>
<td>364</td>
</tr>
<tr>
<td>15.5</td>
<td>Wigner Trajectory for an Oscillating Wave Packet</td>
<td>365</td>
</tr>
<tr>
<td>15.6</td>
<td>Margenau-Hill Distribution Function for a Double-Well Potential</td>
<td>365</td>
</tr>
<tr>
<td>16</td>
<td>Decay Widths of Siegert States, Complex Scaling and Dilatation</td>
<td>369</td>
</tr>
<tr>
<td>16.1</td>
<td>Siegert Resonant States</td>
<td>370</td>
</tr>
<tr>
<td>16.2</td>
<td>A Numerical Method of Determining Siegert Resonances</td>
<td>371</td>
</tr>
<tr>
<td>16.3</td>
<td>Riccati-Padé Method of Calculating Complex Eigenvalues</td>
<td>373</td>
</tr>
<tr>
<td>16.4</td>
<td>Complex Rotation or Scaling Method</td>
<td>376</td>
</tr>
<tr>
<td>16.5</td>
<td>Milne's Method</td>
<td>380</td>
</tr>
<tr>
<td>16.6</td>
<td>Complex Energy Resonance States Calculated by Milne's Differential</td>
<td>382</td>
</tr>
<tr>
<td>16.7</td>
<td>S-Wave Scattering from a Delta Function Potential</td>
<td>384</td>
</tr>
<tr>
<td>16.8</td>
<td>Resonant States for Solvable Potentials</td>
<td>386</td>
</tr>
<tr>
<td>17</td>
<td>Multidimensional Quantum Tunneling</td>
<td>391</td>
</tr>
<tr>
<td>17.1</td>
<td>The Semiclassical Approach of Kapur and Peierls</td>
<td>392</td>
</tr>
<tr>
<td>17.2</td>
<td>Wave Function for the Lowest Energy State</td>
<td>396</td>
</tr>
<tr>
<td>17.3</td>
<td>Calculation of the Low-Lying Wave Functions by Quadrature</td>
<td>398</td>
</tr>
<tr>
<td>17.4</td>
<td>Semiclassical Wave Function</td>
<td>402</td>
</tr>
<tr>
<td>17.5</td>
<td>Tunneling of a Gaussian Wave Packet</td>
<td>408</td>
</tr>
<tr>
<td>17.6</td>
<td>Interference of Waves Under the Barrier</td>
<td>413</td>
</tr>
<tr>
<td>17.7</td>
<td>Penetration Through Two-Dimensional Barriers</td>
<td>419</td>
</tr>
<tr>
<td>17.8</td>
<td>Method of Quasilinearization Applied to the Problem of Multidimensional Tunneling</td>
<td>423</td>
</tr>
<tr>
<td>17.9</td>
<td>Solution of the General Two-Dimensional Problems</td>
<td>428</td>
</tr>
<tr>
<td>17.10</td>
<td>The Most Probable Escape Path</td>
<td>432</td>
</tr>
<tr>
<td>17.11</td>
<td>An Extension of the Hamilton-Jacobi Theory and Its Application for Solving Multidimensional Tunneling Problems</td>
<td>438</td>
</tr>
<tr>
<td>17.12</td>
<td>A Time-Dependent Approach to the Problem of Tunneling in Two</td>
<td>444</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Group and Signal Velocities</td>
<td>453</td>
</tr>
<tr>
<td>18.1</td>
<td>Exact Solution of the Problem of Tunneling in a Constant Barrier</td>
<td>459</td>
</tr>
</tbody>
</table>
19 Time-Delay, Reflection Time Operator and Minimum Tunneling Time

19.1 Time-Delay Caused by Tunneling
19.2 Time-Delay for Tunneling of a Wave Packet
19.3 Landauer and Martin Criticism of the Definition of the Time-Delay in Quantum Tunneling
19.4 Other Approaches to the Tunneling Time Problem
19.5 Time-Delay in Multichannel Tunneling
19.6 Reflection Time in Quantum Tunneling
19.7 Minimum Tunneling Time
19.8 Traversal-Time Wave Function

20 More About Tunneling Time

20.1 Dwell and Phase Tunneling Times
20.2 Büttiker and Landauer Time
20.3 Larmor Clock for Measuring Tunneling Times
20.4 Tunneling Time and Its Determination Using the Internal Energy of a Simple Molecule
20.5 Intrinsic Time
20.6 Measurement of Tunneling Time by Quantum Clocks
20.7 A Critical Study of the Tunneling Time Determination by a Quantum Clock
20.8 Tunneling Time According to Low and Mende

21 Tunneling of a System with Internal Degrees of Freedom

21.1 Lifetime of Coupled-Channel Resonances
21.2 Two-Coupled Channel Problem with Spherically Symmetric Barriers
21.3 Tunneling of a Simple Molecule
21.4 Tunneling of a Homonuclear Molecule in a Symmetric Double-Well Potential
21.5 Tunneling of a Molecule in Asymmetric Double-Wells
21.6 Tunneling of a Molecule Through a Potential Barrier
21.7 Tunneling of Composite Systems in Nuclear Reactions
21.8 Antibound State of a Molecule

22 Motion of a Particle in a Waveguide with Variable Cross Section and in a Space Bounded by a Dumbbell-Shaped Object

22.1 An Exactly Solvable Quantum Waveguide
22.2 Motion of a Particle in a Space Bounded by a Surface of Revolution
22.3 Testing the Accuracy of the Present Method
22.4 Calculation of the Eigenvalues
22.5 Quantum Wires
23 Relativistic Formulation of Quantum Tunneling
23.1 One-Dimensional Tunneling of the Electrons 611
23.2 Relativistic Effects in Time-Dependent Tunneling 616
23.3 Tunneling of Spinless Particles in One Dimension 621
23.4 Tunneling Time in Special Relativity 624
23.5 Quantum Tunneling Times for Relativistic Particles 630

24 Inverse Problems of Quantum Tunneling 641
24.1 A Method for Finding the Potential from the Reflection Amplitude 642
24.2 Determination of the Shape of the Potential Barrier in One-Dimensional Tunneling 644
24.3 Construction of a Symmetric Double-Well Potential from the Known Energy Eigenvalues 649
24.4 The Inverse Problem of Tunneling for Gamow States 652
24.5 Prony’s Method for Determination of Complex Energy Eigenvalues 655

25 Some Examples of Quantum Tunneling in Atomic and Molecular Physics 660
25.1 Torsional Vibration of a Molecule 660
25.2 Electron Emission from the Surface of Cold Metals 663
25.3 Ionization of Atoms in Very Strong Electric Field 667
25.4 A Time-Dependent Formulation of Ionization in an Electric Field 670
25.5 Energy Levels of the Ammonia Molecule and the Ammonia Maser 674
25.6 Optical Isomers 678
25.7 Three-Dimensional Tunneling in the Presence of a Constant Field of Force 680

26 Some Examples in Condensed Matter Physics 688
26.1 The Band Theory of Solids and the Kronig-Penney Model 688
26.2 Tunneling in Metal-Insulator-Metal Structures 692
26.3 Many-Electron Formulation of the Current 693
26.4 Excitation of Closely Spaced Energy Levels in Heterostructures: The Time-Dependent Formulation 700
26.5 Electron Tunneling Through Heterostructures 706
26.6 The Josephson Effect 711

27 Alpha Decay 722
27.1 The Time-Independent Formulation of the α Decay 725
27.2 The Time-Dependent Formulation of the α Decay 729
27.3 The WKB Approximation 734
27.4 Electromagnetic Radiation by a Charged Particle While Tunneling Through a Barrier 739
Contents

27.5 Perturbation Theory Applied to the Problem of Bremsstrahlung in α-Decay 749

Index 759