Contents

Preface xi

Acknowledgments xv

1 Theory of Operation 1

1.1 Units, Conversions, and Symbols 1
1.2 The Physical Basis of Ferrimagnetism 4
1.3 Ferrimagnetic Resonance 11
1.4 Microwave Propagation in Ferrites 15
1.5 Other Technologies 29
 1.5.1 Semiconductor Circulators 29
 1.5.2 Nanotechnology Circulators 30
 1.5.3 Thin Ferrite Films 31
 1.5.4 Active Circulators 32

2 Circulator Specification 35

2.1 The Parameters 35
2.2 Reflections and Segmentation 48
2.3 Junction Circulators 52
2.3.1 Single-Ferrite (Non-Composite) Junction Circulators 54
2.3.2 Composite-Ferrite Junction Circulators 56
2.4 Lumped-Constant Circulators 56
2.5 Differential Phase Shift Circulators 58
2.6 Switching Circulators 60
2.7 Okada Circulators 61
2.8 Field-Displacement Isolators 61
2.9 Resonance Isolators 64

3 Applications of Circulators 69
3.1 Load Isolation 69
3.2 Duplexing 71
3.3 Multiplexing 76
3.4 Parametric Amplifiers 77
3.5 Phase Shifting 81

4 Material Selection 87
4.1 Ferrites 87
4.1.1 Ferrite Classes 87
4.1.2 Ferrite Manufacturing 88
4.1.3 Design Considerations 90
4.1.4 Test Methods 91
4.1.5 Specifications 93
4.1.6 Temperature Effects 93
4.1.7 Ferrite Selection 96
4.2 Magnet Selection 100
4.3 Magnetic Compensating Material Selection 102
4.4 Dielectric Selection 103
4.5 Metals Selection 104
5 Electrical Design 107

5.1 Junction Circulators 107
5.1.1 Basic Principles 107
5.1.2 Historical Papers 111
5.1.3 Above-Resonance Approximations 125
5.1.4 Below-Resonance Approximations 130
5.1.5 Network Synthesis 132
5.1.6 Center Conductor Geometries 143
5.1.7 Waveguide Junction Geometries 149
5.1.8 Stripline Circulator Synthesis Algorithm 153
5.1.9 Microstrip Circulator Synthesis Algorithm 157
5.1.10 Waveguide Junction Circulator Synthesis Algorithm 161
5.1.11 Okada Circulators 163
5.1.12 Circulators Having Composite Ferrites 165
5.2 Lumped-Constant Circulators 167
5.3 Differential Phase Shift Circulators 171
5.4 Resonance Isolators 177
5.5 Dummy Loads for Isolators 179
5.6 Temperature Effects 181
5.7 Intermodulation Distortion 186
5.8 RF Power Effects 187
5.8.1 Steady-State Thermal Effects 187
5.8.2 Transient Thermal Effects 191
5.8.3 Voltage Breakdown 193
5.8.4 Spin-Wave Instability 198

6 Magnetic Design 205

6.1 Magnet Sizing 205
6.1.1 Ferrite Demagnetization Factors 207
6.1.2 Leakage Flux Approximation 213
6.1.3 Approximate Design of Magnetic Circuits 214
Microwave Circulator Design

<table>
<thead>
<tr>
<th>6.1.4</th>
<th>Simulation of Magnetic Circuits</th>
<th>217</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2</td>
<td>Shielding</td>
<td>219</td>
</tr>
<tr>
<td>6.3</td>
<td>Temperature Compensation</td>
<td>221</td>
</tr>
<tr>
<td>6.4</td>
<td>Completing the Circuit</td>
<td>223</td>
</tr>
<tr>
<td>6.5</td>
<td>Special Cases</td>
<td>225</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Switching Circulators</td>
<td>225</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Self-Biased Circulators</td>
<td>228</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Considerations for Microstrip Circulators</td>
<td>228</td>
</tr>
</tbody>
</table>

Mechanical Design 231

<table>
<thead>
<tr>
<th>7.1</th>
<th>Thermal Considerations</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1</td>
<td>Stripline Power Handling</td>
<td>231</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Power Dissipation in Ferrites</td>
<td>233</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Cooling of Ferrites</td>
<td>234</td>
</tr>
<tr>
<td>7.2</td>
<td>Venting</td>
<td>235</td>
</tr>
<tr>
<td>7.3</td>
<td>Coaxial Junction Circulators</td>
<td>237</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Packaging Techniques</td>
<td>237</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Dimensional Tolerances</td>
<td>242</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Controlling Cavity Resonances</td>
<td>244</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Transitions</td>
<td>249</td>
</tr>
<tr>
<td>7.3.5</td>
<td>RFI Control</td>
<td>253</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Dissimilar Metals</td>
<td>253</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Finishes</td>
<td>253</td>
</tr>
<tr>
<td>7.4</td>
<td>Lumped-Constant Circulators</td>
<td>254</td>
</tr>
<tr>
<td>7.5</td>
<td>Waveguide Circulators</td>
<td>256</td>
</tr>
<tr>
<td>7.6</td>
<td>Resonance Isolators</td>
<td>258</td>
</tr>
</tbody>
</table>

Assembly and Testing 261

<table>
<thead>
<tr>
<th>8.1</th>
<th>Assembly Techniques</th>
<th>261</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>Testing</td>
<td>268</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Finding the Operating Point</td>
<td>268</td>
</tr>
</tbody>
</table>
8.2.2 Taking Data 271
8.2.3 RF Power Testing 272
8.2.4 Intermodulation Testing 272
8.2.5 Multipaction Testing 273
8.2.6 Magnetic Moment Measurement 275
8.2.7 Measurement Uncertainty and Gauge Studies 276

9 Tuning 281
9.1 Interaction Between Magnetic and Electrical Adjustments 281
9.2 Magnetic Adjustment 281
9.2.1 Above-Resonance Magnetic Adjustment 282
9.2.2 Below-Resonance Magnetic Adjustment 283
9.2.3 Magnet Charging, Calibration, and Stabilization 283
9.3 Electrical Adjustment 285
9.4 Eigenvalue Evaluation 295

10 Design Examples 301
10.1 Introduction to Examples 301
10.2 Above-Resonance Stripline Junction Circulator 302
10.3 Below-Resonance Stripline Junction Circulator 311
10.4 Waveguide Junction Circulator 319
10.5 Microstrip Circulator 324
10.6 Differential Phase Shift Circulator 329
10.7 Lumped-Constant Circulator 333

List of Symbols 339
Frequently Used Equations 347
About the Author 351
Index 353