Contents

Preface XV
About the Editors XIX
List of Contributors XXIII

Part 1 Common Features of Nematic Liquid Crystals 1

1 Phase Structures of Nematic Liquid Crystals 3
Richard J. Mandle, Emily Bevis, and John W. Goodby
1.1 The “Calamitic” Nematic Phase 3
1.1.1 Structure and Dynamics of the Calamitic Nematic Phase 4
1.1.2 Molecular Ordering and Order Parameter 5
1.1.3 Melting Behavior of Calamitic Nematic Phases 6
1.2 The “Discotic” Nematic Phase 8
1.2.1 Structure and Dynamics of the Nematic Discotic Phase 9
1.3 Properties and Structures of Nematic Liquid Crystals 10
1.3.1 Clustering and Continuum Theory 10
1.3.2 Elastic Constants 12
1.3.3 Birefringence 13
1.3.4 Dielectric Anisotropy 15
1.3.5 Viscosity 16
1.4 The “Biaxial” Nematic Phase 16
1.4.1 Optical Biaxiality 17
1.4.2 Board-like Molecules 17
1.4.3 Bent-Core Molecules 18
1.4.4 Complex Molecular Systems 19
1.5 The “Cubatic” Nematic Phase 20
1.6 The “Twist–Bend” Nematic Phase 22
1.7 The “Ferroelectric” Nematic Phase 25
References 27
Phase Transitions in Rod-Like Liquid Crystals
Daniel Guillon

2.1 Introduction 31
2.2 Isotropic–Nematic (I–N) Transition 32
2.2.1 Brief Summary of the Landau–de Gennes Model 32
2.2.2 Magnetic Birefringence 32
2.2.3 Light Scattering 33
2.2.4 Deviations from the Landau-de Gennes Model 33
2.3 Nematic–Smectic A (N–SmA) Transition 35
2.3.1 The McMillan–de Gennes Approach 35
2.3.2 Critical Phenomena: Experimental Situation 36
2.4 Smectic A–Smectic C (SmA–SmC) Transition 38
2.4.1 General Description 38
2.4.2 Critical Behavior 40
2.4.3 Experimental Situation 41
2.4.4 Smectic A–Smectic C* (SmA–SmC*) Transition 43
2.4.5 The Nematic-Smectic A–Smectic C (NAC) Multicritical Point 45
2.4.6 SmA–SmC Transition in Thin Films 47
2.5 Hexatic B to Smectic A (SmBhex–SmA) transition 48
2.5.1 General Presentation 48
2.5.2 SmBhex–SmA Transition in Thin Films 49
2.6 Induced Phase Transitions 51
2.6.1 Mechanically Induced SmA–SmC Transition 51
2.6.2 Electrically Induced Transitions 52
2.6.3 Photochemically Induced Transitions 54
2.7 Other Transitions 54
2.7.1 Smectic C to Smectic I (SmC–SmI) Transition 54
2.7.2 Smectic C to Smectic F (SmC–SmF) Transition 55
2.7.3 Smectic F to Smectic I (SmF–SmI) Transition 56
2.7.4 Smectic F to Smectic Crystalline G (SmF–SmG) Transition 56

Editor's Note 57
Acknowledgements 58
References 58

Designing Principles and Synthesis of Materials for Nematic Liquid Crystals
Richard J. Mandle and John W. Goodby

3.1 Introduction 63
3.2 Core Systems 65
3.2.1 Aromatic Core Systems 65
3.2.2 Fused Ring Systems 68
3.2.3 Heterocyclic Aromatic Systems 71
3.2.4 Saturated Ring Systems 75
3.2.4.1 Cyclohexane Core Systems 75
3.2.4.2 The 1,4-Disubstituted Bicyclo[2.2.2]octanes 78
3.2.5 2,5-Disubstituted 1,3-Dioxanes 80
3.2.6 Unusual Core Systems 81
3.3 Linking Groups 83
3.3.1 Ester, Thioester, and Ether Linkages 83
3.3.2 Schiff bases, Azo, and Azoxy Linkages 85
3.3.3 Alkanes, Alkenes, and Alkynes 86
3.3.4 Miscellaneous Linking Groups 88
3.4 Lateral Substituents 88
3.5 Terminal Substituents 95
3.5.1 Nonpolar Terminal Substituents 95
3.5.2 Polar Terminal Substituents 95
3.5.2.1 Isothiocyanate 95
3.5.2.2 Trifluoromethyl 96
3.5.2.3 Pentafluorosulfur 96
References 96

Part 2 Conventional Nematic Liquid Crystals 103

4 Nematic Liquid Crystals for Display Applications 105
Melanie Klasen-Memmer and Harald Hirschmann
4.1 Introduction 105
4.2 Basic Requirements and Physical Properties of LCs for Display Applications 106
4.3 Nematic LC Materials for Passive-Matrix Addressed Displays 109
4.3.1 Twisted Nematic Displays 109
4.3.2 Supertwisted Nematic Displays 112
4.4 Nematic LC Materials for Active-Matrix Addressed Displays 115
4.4.1 Twisted Nematic Displays 115
4.4.2 In-Plane- and Fringe Field-Switching Technologies 116
4.4.3 Optically Compensated Bend Mode Displays and Projection Displays 117
4.4.4 Vertical Alignment Technologies 117
4.4.5 PS-VA Technology 125
Acknowledgments 126
Terms 126
Abbreviations for Display Modes 126
Abbreviations for Physical Properties 126
Abbreviations for Phases 127
References 127
Further Reading 129

5 Elastic Properties of Nematic Liquid Crystals 131
Ralf Stannarius
5.1 Introduction to Elastic Theory 131
5.2 Measurement of Elastic Constants 134
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1</td>
<td>Fréedericksz Transition</td>
<td>136</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Light Scattering Measurements:</td>
<td>142</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Other Experiments</td>
<td>143</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental Data of Elastic Constants</td>
<td>144</td>
</tr>
<tr>
<td>5.4</td>
<td>MBBA and n-CB Data</td>
<td>149</td>
</tr>
<tr>
<td>5.5</td>
<td>“Surface-Like” Elastic Constants</td>
<td>150</td>
</tr>
<tr>
<td>5.6</td>
<td>Theory of Elastic Constants</td>
<td>159</td>
</tr>
<tr>
<td>5.7</td>
<td>Biaxial Nematics</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>Dielectric Properties of Nematic Liquid Crystals</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Horst Kresse</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Rod-like Molecules in the Isotopic State</td>
<td>177</td>
</tr>
<tr>
<td>6.2</td>
<td>Static Dielectric Constants of Nematic Samples</td>
<td>179</td>
</tr>
<tr>
<td>6.3</td>
<td>The N_r Phenomenon and the Dipolar Correlation</td>
<td>188</td>
</tr>
<tr>
<td>6.4</td>
<td>Dielectric Relaxation in Nematic Phases</td>
<td>189</td>
</tr>
<tr>
<td>6.5</td>
<td>Dielectric Behavior of Nematic Mixtures</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>205</td>
</tr>
<tr>
<td>7</td>
<td>Diamagnetic Properties of Nematic Liquid Crystals</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Ralf Stannarius</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction to the Magnetic Quantities</td>
<td>211</td>
</tr>
<tr>
<td>7.2</td>
<td>Measurement of Diamagnetic Properties</td>
<td>214</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Faraday–Curie Balance Method</td>
<td>214</td>
</tr>
<tr>
<td>7.2.2</td>
<td>SQUID Measurements</td>
<td>215</td>
</tr>
<tr>
<td>7.2.3</td>
<td>NMR Line Splitting</td>
<td>216</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Magnetic and Magneto-electric Fréedericksz Field</td>
<td>217</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Mechanical Torque Measurements</td>
<td>217</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Compensation Method</td>
<td>218</td>
</tr>
<tr>
<td>7.3</td>
<td>Experimental Data</td>
<td>219</td>
</tr>
<tr>
<td>7.4</td>
<td>Increment System for Diamagnetic Anisotropies</td>
<td>227</td>
</tr>
<tr>
<td>7.5</td>
<td>Consequences and Applications of Diamagnetic Properties</td>
<td>229</td>
</tr>
<tr>
<td>7.6</td>
<td>Ferronematics</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>232</td>
</tr>
<tr>
<td>8</td>
<td>Optical Properties of Nematic Liquid Crystals</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Gerhard Pelzl</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>237</td>
</tr>
<tr>
<td>8.2</td>
<td>Experimental Methods</td>
<td>238</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Total Reflection Method</td>
<td>238</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Hollow Prism Method</td>
<td>238</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Interference Method for Wedge-shaped Nematic Samples</td>
<td>239</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Interference Methods for Plane-parallel Nematic Cells</td>
<td>240</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Other Interference Methods</td>
<td>241</td>
</tr>
</tbody>
</table>
Contents

8.3 Temperature Dependence of Birefringence and Refractive Indices 242
8.4 Dispersion of n_e, n_o, and Δn 245
8.5 Refractive Indices of Mixtures 247
8.6 Birefringence in Homologous Series 248
8.7 Determination of Molecular Polarizability Anisotropy and Orientational Order from Birefringence Data 249
8.8 Relationships between Birefringence and Molecular Structure 250
8.9 References 253

9 Dynamic Properties of Nematic Liquid Crystals 257
 Igor Muševič, Primož Ziherl, and Robert Blinc
9.1 Introduction 257
9.2 Light Scattering and Order Parameter Fluctuations in Isotropic Phase 261
9.3 Dynamics of Nematics Probed by Light Scattering 262
9.4 Optical Kerr Effect and Transient Laser-Induced Molecular Reorientation in the Isotropic and Nematic Phase 266
9.5 Nuclear Magnetic Resonance and Order Parameter Fluctuations in Isotropic Phase 271
9.6 Fluctuations and Nuclear Magnetic Resonance in Nematic Phase 273
9.7 Dielectric Relaxation in Nematics 277
9.8 NMR and Dynamics of Confined Nematics 278
9.9 Dynamics of Randomly Constrained Nematics 281
9.10 Other Observations 282
9.11 References 283

Part 3 Discotic, Biaxial and Chiral Nematic Liquid Crystals 291

10 Design and Synthesis of Nematic Phases Formed by Disk-Like Molecules 293
 Andrew N. Cammidge and Hemant Gopee
10.1 Introduction 293
10.2 Benzene Derivatives 294
10.3 Naphthalene Derivatives 311
10.4 Triphenylene Derivatives 311
10.5 Truxenes and Related Derivatives 321
10.6 Porphyrazines and Phthalocyanines 324
10.7 Shape-Persistent Macrocycles – Phenylacetylene Macrocycles 326
10.8 References 329

11 Design of Biaxial Nematic Mesogens 335
 Matthias Lehmann and Verena Götz
11.1 Introduction 335
11.2 Nematic Mesogens with Shape Biaxiality 336
13.6.2.3 The Director Distribution 423
13.6.2.4 Retardation Measurement 424
13.7 Summary 424
Acknowledgment 425
References 426

14 Design and Synthesis of Chiral Nematic Liquid Crystals 429
Andreas Taugerbeck and Christopher J. Booth
14.1 Introduction to the Chiral Nematic Phase and Its Properties 429
14.2 Formulation and Application of Chiral Nematic Liquid Crystal Mixtures 432
14.3 Applications of Chiral Nematic Phases 433
14.4 Classification of Chiral Nematic Liquid-Crystalline Compounds 435
14.4.1 Aspects of Molecular Symmetry for Chiral Nematic Phases 436
14.5 Type I Chiral Nematic Liquid Crystals 440
14.5.1 Azobenzenes and Related Mesogens 440
14.5.2 Azomethine (Schiff's Base) Mesogens 442
14.5.3 Stable Phenyl, Biphenyl, Terphenyl, and Phenylethylbiphenyl Mesogens 444
14.5.4 Ester Mesogens 446
14.5.5 Derivatives of Chiral Alcohols 451
14.6 Type II Chiral Nematic Liquid Crystals 460
14.6.1 Type IIa Twin Systems Using Chiral Flexible Spacers 460
14.6.2 Type IIb Materials Using Achiral Flexible Spacers and Chiral Terminal Groups 464
14.6.3 Type IIc and d Materials Using One or Two Chiral Cores 466
14.7 Type III Chiral Nematic Liquid Crystals 469
14.7.1 Cholesteryl Esters 470
14.7.2 Chiral Mesogens Derived from Cyclohexane 471
14.7.3 Chiral Heterocyclic Mesogens 471
14.7.4 Axially Chiral Liquid Crystals 475
14.7.4.1 Axially Chiral Alkenes and Overcrowded Alkenes 475
14.7.4.2 Allenes 478
14.7.4.3 Tricyclo[4.4.0.0^3,8]decane or Twistane Derived Mesogens 480
14.7.4.4 Sterically Hindered Biphenyl Derivatives 480
14.7.4.5 Spirobiindane Derivatives 483
14.8 Concluding Remarks 483
References 484

15 Structure and Optical Properties of Chiral Nematic Liquid Crystals 493
Flynn Castles and Stephen M. Morris
15.1 Introduction 493
15.2 Structure 493
15.2.1 Helical Twisting Power 494
15.2.2 Temperature Dependence of the Pitch 495
XII

Contents

15.2.3 Polarizing Optical Microscopy 495
15.2.3.1 Planar Texture 495
15.2.3.2 Grandjean–Cano Wedges 496
15.2.3.3 Focal Conic Texture 498
15.2.3.4 Fingerprint 498
15.2.3.5 Uniform Lying Helix 498
15.2.4 Theory 500
15.2.4.1 Oseen–Frank Theory 500
15.2.4.2 Landau–de Gennes Theory 500
15.3 Optical Properties 501
15.3.1 Propagation of Light Parallel to the Helical Axis 503
15.3.1.1 Optical Activity 505
15.3.1.2 Selective Reflection 507
15.3.1.3 Density of Photon States 511
15.3.2 Oblique Incidence 514
15.3.3 Uniaxial Approximation for Short Pitch 515
15.4 Defects 516
15.5 Applications 518
References 518

16 Chiral Nematic Liquid Crystals and Electric, Magnetic, and Mechanical Fields 521
Stephen M. Morris and Harry J. Coles
16.1 Introduction 521
16.2 Magnetic Fields 521
16.2.1 Chiral Nematic–Nematic Transition 522
16.2.2 Instabilities 526
16.3 Electric Fields 527
16.3.1 Dielectric Coupling 527
16.3.1.1 Perpendicular to the Helix Axis 528
16.3.1.2 Parallel to the Helix Axis 532
16.3.2 Flexoelectric Coupling 539
16.3.2.1 Flexoelectric Coupling in an Achiral Nematic 539
16.3.3 Chiral Nematic Fingers 547
16.4 Flow 549
16.4.1 Permeation Effect 549
16.4.2 Lehmann Rotation 550
16.5 Concluding Remarks 551
References 551

Part 4 Blue Phases 555

17 Design of Blue Phase Materials 557
Isa Nishiyama and Atsushi Yoshizawa
17.1 Introduction 557
17.2 Design Concepts 558
17.2.1 Chirality 559
17.2.2 Elasticity 559
17.2.3 Flexoelectricity 561
17.2.4 Biaxiality 562
17.2.5 Other Effects 563
17.2.6 Remarks on the Design Concept 564
17.3 Blue Phase Materials 565
17.3.1 Conventional LCs 565
17.3.2 Oligomers 566
17.3.2.1 Linear and Cyclic Dimers 567
17.3.2.2 Unsymmetric Dimers Possessing a Cholesterol Segment 568
17.3.2.3 U-Shaped Oligomers 570
17.3.2.4 T-Shaped Oligomers 574
17.3.3 Polymers 576
17.3.4 Exotic Materials 577
17.4 BPIII—Materials and Application 577
17.5 Concluding Remarks 583
References 584

18 The Structures of the Blue Phases 587
Peter J. Collings
18.1 Introduction 587
18.2 Fundamental Concepts 588
18.3 Theory 590
18.4 Bragg Scattering 594
18.5 Crystal Morphology 595
18.6 Optical Activity 598
18.7 Phase Diagram 600
18.8 Heat Capacity 603
18.9 Electric Field Effects 604
18.10 Wide Temperature Range Blue Phases 606
18.11 Smectic Blue Phases 607
18.12 Conclusion 608
References 608

19 Polymer- and Colloid-Stabilized Blue Phases 611
Hirotugu Kikuchi
References 617

Index 621