Industrial Scale Suspension Culture of Living Cells
Contents

Foreword V
Preface XXI
List of Contributors XXIII

The History and Economic Relevance of Industrial Scale Suspension Culture of Living Cells 1
Hans-Peter Meyer and Diego R. Schmidhalter

1 Introduction 2
2 A Short History of Suspension Culture (Fermentation) 2
2.1 Ethanol, Organic Acids, and Solvents, the Beginning 2
2.2 Vitamins Fermentation Takes a Long Time to Develop 4
2.3 Steroids, the First Large-Scale Biocatalysis Processes 5
2.4 Antibiotics, a US-Lead Turning Point in Fermentation Technology 5
2.5 Amino Acids, a Japanese Fermentation Success Story 8
2.6 Enzymes, a European Fermentation Success Story 9
2.7 Single Cell Proteins, an Economic Flop 9
2.8 Biofuels are Controversial Story 10
2.9 Recombinant DNA Technology Based Products (Monoclonal Antibodies and Other Recombinant Proteins), Setting off an Avalanche of New Products 11
3 The Contemporary Situation 11
3.1 How Long Can the USA Keep its Leading Role? 11
3.2 China and India Become Global Forces in Fermentation 12
4 The Future of Suspension Culture 13
4.1 New Frontiers 14
4.2 Yet “Uncultured” Cells and Organisms? 15
5 Economic and Market Considerations 16
5.1 The Pharmaceutical Market 19
5.2 Personal Care Products 25
5.3 Chemicals, Industrial and Technical Enzymes 27
5.4 Food, Dietary Supplements (Functional Food, Nutraceuticals), and Feed Products 27
Part I Suspension Culture of Bacteria, Yeasts, and Filamentous Fungi 39

1 Bacterial Suspension Cultures 41
 Patrick Sagmeister, Mohammadhadi Jazini, Joachim Klein, and Christoph Henwig
1.1 Introduction 41
1.2 Organisms, Cells, and their Products 42
1.2.1 Bacteria as Production Platform for Various Products 42
1.2.2 Historical Outline for Escherichia coli 44
1.2.3 Industrial Aspects of Bacterial Expression Systems 45
1.3 Bioprocess Design Aspects for Recombinant Products 51
1.3.1 Bacterial Cultivation Processes 51
1.3.2 Gram Negative Cell Factory: Cellular Compartments and Transport across Membranes 52
1.3.3 Industrial Strategies: Quality, Folding State, and Location of Recombinant Protein Products 53
1.3.4 Approaches towards Bioprocess Design, Optimization, and Manufacturing 55
1.3.5 Bacterial Bioprocess Design 56
1.3.5.1 Technical and Physiological Constraints for Bacterial Bioprocess Design 56
1.3.5.2 Media Design 57
1.3.5.3 Product Titer is Determined by the Biomass Concentration and the Specific Productivity q_V 58
1.3.6 Industrial Production Strategy by Two-Step Cultivation 59
1.3.6.1 Batch Phase for the Accumulation of Biomass 60
1.3.6.2 Structured Approach Towards Batch Design 60
1.3.6.3 Fed-Batch Phase Process Design from Scratch 61
1.3.6.4 Induction Phase: Product Formation Characteristics 63
1.3.6.5 Process Parameters Impacting Recombinant Product Formation 64
1.3.6.6 Concept of Time-Space Yield 65
1.4 Basic Bioreactor Design Aspects 66
1.4.1 Introduction 66
1.4.2 Vessel Design and Construction 67
1.4.3 Dimensioning 67
1.4.3.1 Materials of Construction 67
1.4.3.2 Surface Quality and Welding 69
1.4.3.3 Nozzles and Ports 70
1.4.4 Mass Transfer 70
1.4.5 Cleaning in Place 72
1.4.6 Steaming in Place 73
1.4.7 Monitoring and Control of Bioprocesses 73
1.4.7.1 Standard Instrumentation – Measuring and Control of Process Parameters 73
1.4.7.2 Challenges with Bioreactor Standard Sensors 74
1.4.7.3 Advanced Bioprocess Analytics: Real-Time Monitoring of Process Variables 74
1.5 Single Use Bioreactors for Microbial Cultivation 76
1.5.1 Multi-use or Single Use? 76
1.5.2 Challenges for the Use of Single Use Bioreactors in Microbial Bioprocesses 77
1.5.3 Microbial Bioprocess Development Using Single Use Bioreactors 77
1.5.4 Applications for Single Use Bioreactors in Microbial Suspension Cultures 79
1.6 Quality by Design: Vision or Threat for Twenty-First Century Pharmaceutical Manufacturing 79
1.6.1 Regulatory Drive towards the Implementation of QbD 80
1.6.2 Process Development along QbD Principles 82
1.6.3 Entry Points to QbD for Manufacturers 84
1.6.4 Challenges for Putting QbD Into Practice 84
1.6.5 Process Understanding for Biopharmaceutical Processes 85
1.6.5.1 Quality by Design – Opportunity or Threat for the Pharmaceutical Industry? 86
1.7 Process Economics 87
1.7.1 Optimization of Overall Productivity and Capital Expenses of the Production Facility 87
1.7.2 Further Economic Effects by Intracellular Product Location 88
1.7.3 Comparison of Product Yields, Intracellular Versus Extracellular 88
References 90

2 Yeast Suspension Culture 95
Diethard Mattanovich, Carmen Jungo, Jana Wenger, Michal Dabros, and Michael Maurer

2.1 Introduction 95
2.2 Yeast Species Used in Biotechnology and their Products 96
2.2.1 Expression Systems 98
2.3 Basic Process Design Aspects 98
2.3.1 Process History 98
2.3.2 Yeast Fermentation Processes 99
2.3.3 Process Design for Ethanol Production 106
2.3.4 High Cell Density Fermentations – A Downstream Processing Challenge and a Yield Problem? 106
2.4 Basic Bioreactor Design Aspects 107
2.4.1 Bioreactors for Yeast Cultivation 107
2.4.2 Methanol, Safety and Explosion-Proof (Ex-proof) Measures 108
2.4.2.1 Concerns Regarding Methanol Use 108
3.2.3 Organic Acids 134
3.2.4 Proteins 134
3.3 Filamentous Fungi as a Production Platform 135
 3.3.1 Expression Systems 135
 3.3.2 Morphology 136
 3.3.3 Genomic Tools 137
 3.3.4 Sequencing and Genome Annotation 138
3.4 Fermentation of Filamentous Organisms 140
 3.4.1 Fermentation Platforms 140
 3.4.2 Reactor Design 141
 3.4.3 Agitation and Aeration 141
 3.4.4 Mass Transfer 143
 3.4.5 Reactor Control 146
 3.4.6 Rheology 147
 3.4.7 Mixing Time and Cavern Formation 151
 3.4.8 Correlation between Viscosity and $k_l\alpha$ 151
3.5 Process Scaling 152
 3.5.1 Dimensionless Numbers 153
 3.5.2 Power Draw 154
 3.5.3 Modeling Oxygen Mass Transfer 155
3.6 Regulatory Aspects 156
3.7 Economic Aspects 157
3.8 Conclusions and Perspectives 157
References 158

Part II Suspension Culture of Algae and Plant Cells 163

4 Microalgae Grown under Heterotrophic and Mixotrophic Conditions 165
 Karin Kovar, Pavel Pfibyl, and Markus Wyss
 4.1 Eco-physiology and Genetics of Biotechnologically Relevant Species 165
 4.1.1 Taxonomy 166
 4.1.2 Access to Axenic Cultures and Screening for Bioactivities 167
 4.1.3 Biotechnologically Relevant Species and their Genetic Improvement 168
 4.2 Products from Microalgae Grown in the Absence of Light 172
 4.3 Bioreactor Design 174
 4.4 Process Design: Culture Media and Process Control Strategies 174
 4.5 Process Economics 176
 4.6 Commercialization of Microalgae-Derived Products and Regulatory Aspects 176
References 178
5 Recombinant Protein Production with Microalgae 187
 Alexandre Lejeune, Remy Michel, and Aude Carlier
5.1 Organisms, Cells, Expression Systems, Products 187
5.2 Production of Recombinant Therapeutics in Microalgae: Process Design Aspects 189
5.2.1 Overall Process Overview: From Genetic Transformation to Cell Banking 189
5.2.2 Basic Aspects of Cultivation of Microalgal Cells for Production of Recombinant Therapeutic Proteins 190
5.3 Regulatory Aspects 192
5.4 Summary and Outlook 194
References 195

6 Suspension Culture of Microorganisms (Algae and Cyanobacteria) Under Phototrophic Conditions 199
 Peter Bergmann, Astrid Nissen, Lars Beyer, Peter Ripplinger, and Walter Trösch
6.1 Introduction 199
6.1.1 Photosynthetic Microorganisms (Algae and Cyanobacteria) in General 200
6.1.2 Microalgal Evolution and Taxonomy 201
6.1.3 Microalgae in Biotechnology 201
6.1.4 Industrial Microalgae Biotechnology – A Brief History 202
6.2 Basic Process Design Aspects 203
6.3 Large-Scale Cultivation Systems 206
6.3.1 Open Ponds – Technology Overview 207
6.3.2 Open Ponds – Production Sites 208
6.3.3 Open Ponds – Performance 209
6.3.4 Open Ponds – Energy Consumption 210
6.4 Photobioreactors – Technology Overview 211
6.4.1 Photobioreactors – Tubular 212
6.4.1.1 Tubular Photobioreactors – Production Sites 213
6.4.1.2 Tubular Photobioreactors – Performance 213
6.4.1.3 Tubular Photobioreactors – Energy Consumption 214
6.4.2 Photobioreactors – Flat-Plate 215
6.4.2.1 Flat-Plate Photobioreactors – Production Sites 217
6.4.2.2 Flat-Plate Photobioreactors – Performance 217
6.4.2.3 Flat-Plate Photobioreactors – Energy Consumption 217
6.5 Conclusion/Outlook 218
References 219

7 Suspension Culture of Plant Cells Under Heterotrophic Conditions 225
 Nicole Imseng, Stefan Schillberg, Cornelia Schürch, Daniel Schmid, Kai Schütte, Gilbert Gorr, Dieter Eibl, and Regine Eibl
7.1 Introduction 225
7.2 In Vitro Initiation and Maintenance of Plant Cell Suspension Cultures 229
 7.2.1 General Procedure 229
 7.2.2 Plant Stem Cells 231
 7.2.3 Non-transformed and Genetically Modified Plant Cell Suspensions 233
7.3 Characteristics of Heterotrophic Plant Suspension Cells and Resulting Process Design 235
 7.3.1 Culture Characteristics and Typical Cultivation Parameters 235
 7.3.2 Primary Cell Metabolism and Culture Media 236
 7.3.3 Process Mode 237
7.4 Suitable Bioreactors 238
 7.4.1 Categorization Approach 238
 7.4.2 Most Often Used Bioreactors Types 240
7.5 Commercial Manufacture of Plant Cell-Derived Cosmetics and Therapeutics under Additional Consideration of Economic and Regulatory Aspects 243
 7.5.1 Case Study: PhytoCellTec™ Malus domestica 243
 7.5.1.1 Production Process 243
7.5.1.2 Effectiveness of the Bioactive Ingredients Produced In Vitro 244
 7.5.2 Case Study: Paclitaxel 248
 7.5.2.1 Introduction 248
 7.5.2.2 Cell Line Development and Cryopreservation 249
 7.5.2.3 PCF™ Process Conditions 250
 7.5.2.4 Summary 252
7.6 Conclusion 252
 References 252

8 Suspension Culture of Plant Cells Under Phototrophic Conditions 261
 Holger Niederkrüger, Paulina Dabrowska-Schlepp, and Andreas Schaaf
 8.1 Introduction 261
 8.2 BryoTechnology™: Production of Biologics with Moss (Physcomitrella patens) 262
 8.2.1 Characteristics of BryoTechnology™ 262
 8.2.1.1 Moss Taxonomy and Natural Habitats 262
 8.2.1.2 Life Cycle and Physiology 262
 8.2.1.3 Homologous Recombination 263
 8.2.1.4 Recombinant Protein Production 265
 8.2.2 Basic Process Design Aspects 265
 8.2.2.1 Transformation 265
 8.2.2.2 Expression Vectors 266
 8.2.2.3 Strain Development 266
 8.2.2.4 Cell Banking 267
 8.2.2.5 Upstream Process 267
 8.2.2.6 Harvest 269
8.2.2.7 Downstream 271
8.2.2.8 Timelines of Process Development 272
8.2.3 Basic Bioreactor Design Aspects 272
8.2.3.1 Illumination 275
8.2.3.2 Biomass Handling 275
8.2.3.3 IPC 276
8.2.3.4 Process Scale-Up 276
8.2.3.5 Current Limitations 277
8.2.4 Summary and Outlook 279
8.3 The LEX-System: Production of Biologics with Duckweed (Lemna minor) 280
8.3.1 Characteristics of the LEX-System 280
8.3.1.1 Duckweed Taxonomy, Physiology and Morphology 280
8.3.1.2 Biotechnological Aspects of Duckweed 280
8.3.1.3 Timelines of Process Development 281
8.3.2 Basic Process Design Aspects 281
8.3.2.1 Expression Vectors 281
8.3.2.2 Strain Development 282
8.3.2.3 Master-Plant Banking 282
8.3.2.4 Upstream Process 282
8.3.2.5 Downstream 283
8.3.3 Basic Bioreactor Design Aspects 284
8.3.4 Summary and Outlook 285
8.4 Key Factors Related to Process Economics 285
8.5 Regulatory Aspects 286
References 288

Part III Suspension Culture of Protozoa, Insect Cells, Avian Cells, and Mammalian Cells 293

9 Suspension Culture of Protozoan Organisms 295
Marcus W.W. Hartmann and Reinhard Breitling
9.1 Introduction 295
9.2 Ciliates 296
9.2.1 Specific Features of Ciliates 296
9.2.2 Suspension Culture of Ciliates 299
9.2.3 Strengths of the Ciliate Tetrahymena thermophila 304
9.2.3.1 Mass Cultivation, Scalability, and Usability of Market Standard Fermentation Equipment 304
9.2.3.2 Reliable High-Efficiency Transformation Protocols 305
9.2.3.3 Established Expression Vectors 305
9.2.3.4 Serum-Free Complex- and Chemically-Defined Media 307
9.2.3.5 Consistent and Advantageous N-Glycosylation with Lack of Fucose 309
9.2.4 Challenges for using *Tetrahymena* in Production of Recombinant Proteins 310
9.2.4.1 Lack of Terminal Sialylation and γ-Carboxylation as Post-translational Modifications 310
9.2.5 Big Lines to Classes of Products and Main Markets 311
9.2.5.1 *Tetrahymena* as New Production Platform Technology 311
9.2.6 Basic Process Design Aspects for *Tetrahymena* Suspension Culture 313
9.2.6.1 Principal Bioreactor Set Up for *Tetrahymena* Suspension Culture 313
9.2.6.2 Inoculation Titer, Cell Counting and Dry Mass 314
9.2.6.3 Aeration, Dissolved Oxygen Concentration, and Antifoam Reagents 315
9.2.6.4 Mucocyst Material 316
9.2.7 Basic Bioreactor Design Aspects for *Tetrahymena* Suspension Culture 316
9.2.8 Key Factors in Process Economics 317
9.2.8.1 Investment Costs 317
9.2.8.2 Cost of Goods for Fermentation 318
9.2.8.3 Other Costs 318
9.2.8 Flagellates 319
9.3.1 Specific Features of Flagellates 319
9.3.2 Suspension Culture of Hemoflagellates 322
9.3.3 Strengths of the Hemoflagellate *Leishmania tarentolae* 324
9.3.4 Challenges for the Application of the Hemoflagellate *Leishmania tarentolae* 326
9.3.5 Big Lines to Classes of Products and Main Markets 327
9.3.6 Basic Process Design Aspects for *Leishmania* Suspension Culture 328
9.3.7 Basic Bioreactor Design Aspects for *Leishmania* Suspension Culture 331
9.3.8 Key Factors for Process Economics 332
9.4 Regulatory Aspects of Protozoan Production Organism 334
9.5 Summary and Outlook 335
References 336

10 Industrial Large Scale of Suspension Culture of Insect Cells 349
António Roldão, Manon Cox, Paula Alves, Manuel Carrondo, and *Tiago Vicente*
10.1 History 349
10.2 Concepts in Insect Cell Culture 351
10.2.1 Cell Types, Expression Systems, and Products 351
10.2.2 Maintaining Insect Cells in Culture – Requirements of the Bioreactor Design 358
10.2.3 Insect Cell Metabolism: A Brief Overview 364
10.2.4 A Bottom-Up Approach for Industrial Insect Cell-Based Cultures 366
10.2.4.1 Upstream Process Development Strategies 367
10.2.4.2 Downstream Process Development Strategies 370
10.3 Regulatory Hurdles for Insect Derived Human Products 374
10.3.1 Case Study: Flublok™ Regulatory History 376
10.4 What Comes Next? 377
10.4.1 Improvements in Production Cycle and Yields 377
References 378

11 Avian Suspension Culture Cell Lines for Production of Vaccines and Other Biologicals 391
Manfred Reiter, Daniel Portsmouth, and P. Noel Barrett
11.1 Development of Cell Culture for the Production of Vaccines and Biologicals 391
11.2 Avian Cell Lines 393
11.3 Potential of Avian Cell Lines for the Manufacture of Vaccines and Biologicals 394
11.3.1 Modified Vaccinia Virus Ankara (MVA) Vaccines 394
11.3.2 Yellow Fever Vaccines 394
11.3.3 TBEV Vaccines 395
11.3.4 Influenza Vaccines 395
11.3.5 Monoclonal Antibodies 397
11.4 Development of Avian Cell Lines 397
11.4.1 EB66 (Vivalis) 398
11.4.2 AGE1.CR (Probiogen) 399
11.4.3 QOR2/2E11 (Baxter) 400
11.4.3.1 Establishment of QOR2/2E11 400
11.4.3.2 Characterization and GMP Qualification 401
11.4.3.3 Virus growth in QOR2/2E11 Cells 401
11.4.3.4 MVA Virus Replication on QOR2/2E11 Cells at Different MOIs and Temperature 403
11.4.4 Chicken Embryo Cell Line PBS-12SF (Michigan State University, USA) 405
11.5 Basic Process Design Aspects 405
11.6 Basic Bioreactor Design Aspects 405
11.7 Key Factors Related to Process Economics 405
11.8 Regulatory Aspects 406
11.9 Summary and Outlook 406
References 407

12 Large Scale Suspension Culture of Mammalian Cells 411
Richard M. Alldread, John R. Birch, Hilary K. Metcalfe, Suzanne Farid, Andrew J. Racher, Robert J. Young, and Mohsan Khan
12.1 Introduction to Mammalian Cell Culture 412
12.1.1 Brief History of the Use of Mammalian Cell Culture 412
12.1.2 Why Mammalian Cells for Protein Production? 413
12.1.3 Commercial Importance of Mammalian Cell Culture 414
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5.3.3 Robustness of Legacy Purification Facilities to Higher Titer Processes</td>
<td>450</td>
</tr>
<tr>
<td>12.6 Regulatory Aspects</td>
<td>450</td>
</tr>
<tr>
<td>12.6.1 Source, History, and Generation of the Cell Substrate</td>
<td>451</td>
</tr>
<tr>
<td>12.6.2 Cell Banks</td>
<td>452</td>
</tr>
<tr>
<td>12.6.3 Cell Substrate Stability</td>
<td>452</td>
</tr>
<tr>
<td>12.6.4 Expression Vector</td>
<td>452</td>
</tr>
<tr>
<td>12.6.5 Characterization of Cell Banks</td>
<td>452</td>
</tr>
<tr>
<td>12.6.6 Quality by Design (QbD)</td>
<td>453</td>
</tr>
<tr>
<td>12.7 Summary and Outlook</td>
<td>453</td>
</tr>
<tr>
<td>References</td>
<td>455</td>
</tr>
</tbody>
</table>

Part IV Suspension Culture for Special Products 463

13 Pillars of Regenerative Medicine: Therapeutic Human Cells and Their Manufacture 465

Christian van den Bos, Robert Keefe, Carmen Schirmaier, and Michael McCaman

13.1 Introduction 465
13.1.1 Regeneration 465
13.1.2 Therapeutically Valuable Cells 466
13.2 Autologous Therapies 468
13.2.1 T-Cells 470
13.2.2 Dendritic Cells 473
13.2.3 Natural Killer Cells 474
13.2.4 Hematopoietic Stem Cells 475
13.3 Allogeneic Therapies 476
13.3.1 Background 476
13.3.2 Current Definition 477
13.3.3 Activity 477
13.3.4 Animal Models 478
13.3.5 Safety 479
13.3.6 Lack of Rejection 479
13.3.7 Immunity and Manufacturing 480
13.3.8 Manufacturing and Technology Transitions 480
13.3.9 Challenges to Manufacturing 480
13.3.9.1 Dosing 481
13.3.9.2 Biological Limitations to Culture Expansion Yields 482
13.3.9.3 Regulatory Expectations 482
13.3.10 Markers versus Process 483
13.3.11 Current Solutions 483
13.3.12 Forthcoming Solutions, Lessons from Bioproduction versus MSC Biology 484
13.3.13 Adaptation/Directed Evolution of Industrial Cell Lines 486
13.3.14 Therapeutic Cells Should not be Adapted 486
13.3.15 Providing Scalable Adhesion Surfaces in Stirred-Tank Bioreactors: Microcarrier Based Bioreactor Processes 487
13.3.15.1 Expanding Adult Somatic Stem Cells: A Medium Scale Bioreactor Example 488
13.3.16 Critical Quality Attributes (CQAs) for Therapeutic Cells 488
13.3.17 Potency 490
13.3.18 Practical Challenges 493
13.3.19 Future Directions for Cell Testing 493
13.4 Downstream Processing 494
13.5 Key Factors Towards Economic Success 496
13.6 Regulatory Considerations 497
13.7 Summary and Outlook 497
References 498

14 Virus Production Under Suspension Conditions 503
Otto-Wilhelm Merten, Wilfried A.M. Bakker, Jürgen Vorlop, Manfred Reiter, Gabriel Vinsovsky, Volker Jäger, Maia Merabishvili, and Udo Reichl
14.1 Introduction 503
14.2 Adherent versus Suspension Culture for Virus Production 504
14.2.1 Viral Vaccines for Human use Produced with Microcarrier Based Manufacturing Processes 506
14.2.2 Towards Single Cell Suspension Processes for Virus Production 506
14.3 Polio Virus/Vaccines 508
14.3.1 Introduction 508
14.3.2 Large-Scale IPV Manufacturing Using Vero Cells Grown on Microcarriers 509
14.3.3 Per.C6 and Other Cell Lines for Future Polio Vaccine Production 509
14.3.4 Future Perspectives in IPV Manufacturing 511
14.4 Influenza Virus/Vaccines 512
14.4.1 Introduction 512
14.4.2 Use of Anchorage Dependent Cell Lines – Development of Microcarrier Based Suspension Processes 512
14.4.3 Use of Cell Lines Adapted to Suspension Growth 514
14.5 Modified Vaccinia Ankara (MVA) Production in Suspension Cell Lines 517
14.6 Production of Viruses for Gene Therapy Purpose 519
14.6.1 Large Scale Adenovirus Production Using Suspension Culture Processes 520
14.6.2 Large Scale AAV Production Using Suspension Culture Processes – Comparison of Different Production Systems 523
14.6.3 LV Vector Production – Towards the Use of Suspension Process for Transient Vector Production 527
14.7 Other Viruses 532
14.7.1 Production of Viruses for Veterinary Vaccines 532
14.7.2 Production of Bio-pesticides using the Insect Cell/Baculovirus System 533
14.7.3 Production of Bacteriophages Using Bacterial Suspension Cultures for Phage-Therapy 537
14.7.3.1 Introduction 537
14.7.3.2 Bacterial Strains – Selection for Bacteriophage Generation 538
14.7.3.3 Bacteriophages – Isolation 539
14.7.3.4 Bacteriophages – Production 540
14.7.3.5 Large Scale Production of Phages 540
14.8 Concluding Remarks 542
References 543

15 Cultivable Marine Organisms as a Source of New Products 555
Jean-Michel Komprobst
15.1 Introduction 555
15.2 Substances of Interest Isolated from Archaea and Prokaryotes 557
15.2.1 Archaea 557
15.2.2 Non-photosynthetic Bacteria 558
15.2.3 Cyanobacteria 560
15.3 Substances of Interest Isolated from Unicellular Eukaryotes 560
15.3.1 Unicellular Chlorophyta and Rhodophyta 563
15.3.2 Diatoms, Chrysophyceae, Raphidophyceae, and Eustigmatophyceae 564
15.3.3 Haptophyceae (= Prymnesiophyceae) 565
15.3.4 Fungi and Thraustochytrids 565
15.3.5 Dinoflagellates 567
15.4 Substances of Interest Isolated from Microorganisms Associated with Pluricellular Organisms 570
15.4.1 Bacteria and Sponges 570
15.4.2 Bacteria and Bryozoans 572
15.4.3 Bacteria, Prochlorophyta, and Didemnidae 572
15.4.4 Dinoflagellates and Cnidaria 573
15.4.5 Dinoflagellates and Platyhelminthes (Flat Worms) 575
15.5 Substances of Interest Produced by Sponge Cell Culture 575
15.6 Substances of Interest Isolated by Culture of Macroorganisms 575
15.6.1 Red Algae and Marine Spermatophyta 578
15.6.2 Green algae and Molluscs 579
15.7 Conclusion and Future Prospects 579
References 584

Index 593