THETA FUNCTIONS
AND KNOTS

Răzvan Gelca
Texas Tech University, USA
Contents

Preface vii

1. Prologue 1

1.1 The history of theta functions 1
 1.1.1 Elliptic integrals and theta functions 1
 1.1.2 The work of Riemann 5

1.2 The linking number 7
 1.2.1 The definition of the linking number 7
 1.2.2 The Jones polynomial 12
 1.2.3 Computing the linking number from skein relations 14

1.3 Witten's Chern-Simons theory 16

2. A quantum mechanical prototype 21

2.1 The quantization of a system of finitely many free one-dimensional particles 21
 2.1.1 The classical mechanics of finitely many free particles in a one-dimensional space 21
 2.1.2 The Schrödinger representation 24
 2.1.3 Weyl quantization 28

2.2 The quantization of finitely many free one-dimensional particles via holomorphic functions 30
 2.2.1 The Segal-Bargmann quantization model 30
 2.2.2 The Schrödinger representation and the Weyl quantization in the holomorphic setting 37
 2.2.3 Holomorphic quantization in the momentum representation 40
2.3 Geometric quantization .. 41
 2.3.1 Polarizations .. 42
 2.3.2 The construction of the Hilbert space using geometric quantization .. 48
 2.3.3 The Schrödinger representation from geometric considerations .. 52
 2.3.4 Passing from real to Kähler polarizations 57

2.4 The Schrödinger representation as an induced representation 57

2.5 The Fourier transform and the representation of the symplectic group \(Sp(2n, \mathbb{R})\) .. 61
 2.5.1 The Fourier transform defined by a pair of Lagrangian subspaces .. 61
 2.5.2 The Maslov index .. 64
 2.5.3 The resolution of the projective ambiguity of the representation of \(Sp(2n, \mathbb{R})\) .. 70

3. Surfaces and curves .. 81
 3.1 The topology of surfaces 82
 3.1.1 The classification of surfaces 82
 3.1.2 The fundamental group 83
 3.1.3 The homology and cohomology groups 85
 3.1.4 The homology groups of a surface and the intersection form 90
 3.2 Curves on surfaces .. 94
 3.2.1 Isotopy versus homotopy 94
 3.2.2 Multicurves on a torus 99
 3.2.3 The first homology group of a surface as a group of curves 102
 3.2.4 Links in the cylinder over a surface 108
 3.3 The mapping class group of a surface 109
 3.3.1 The definition of the mapping class group 109
 3.3.2 Particular cases of mapping class groups 112
 3.3.3 Elements of Morse and Cerf theory 114
 3.3.4 The mapping class group of a closed surface is generated by Dehn twists 122

4. The theta functions associated to a Riemann surface 135
 4.1 The Jacobian variety 135
4.1.1 De Rham cohomology .. 136
4.1.2 Hodge theory on a Riemann surface 137
4.1.3 The construction of the Jacobian variety 147
4.2 The quantization of the Jacobian variety of a Riemann
surface in a real polarization 153
4.2.1 Classical mechanics on the Jacobian variety 153
4.2.2 The Hilbert space of the quantization of the Jacobian
variety in a real polarization 156
4.2.3 The Schrödinger representation of the finite
Heisenberg group ... 162
4.3 Theta functions via quantum mechanics 168
4.3.1 Theta functions from the geometric quantization
of the Jacobian variety in a Kähler polarization 168
4.3.2 The action of the finite Heisenberg group on theta
functions ... 173
4.3.3 The Segal-Bargmann transform on the Jacobian
variety ... 180
4.3.4 The algebra of linear operators on the space of
theta functions and the quantum torus 182
4.3.5 The action of the mapping class group on theta
functions ... 184
4.4 Theta functions on the Jacobian variety of the torus 188
4.4.1 The theta functions and the action of the Heisenberg
group ... 188
4.4.2 The action of the S map 189
4.4.3 The action of the T map 192

5. From theta functions to knots 195
5.1 Theta functions in the representation theoretical setting 195
5.1.1 Induced representations for finite groups 195
5.1.2 The Schrödinger representation of the finite
Heisenberg group as an induced representation 199
5.1.3 The action of the mapping class group on theta
functions in the representation theoretical setting 203
5.2 A heuristical explanation 210
5.2.1 From theta functions to curves 211
5.2.2 The idea of a skein module 214
5.3 The skein modules of the linking number 215
5.3.1 The definition of skein modules 215
5.3.2 The group algebra of the Heisenberg group as a skein algebra .. 221
5.3.3 The skein module of a handlebody ... 227
5.4 A topological model for theta functions 229
5.4.1 Reduced linking number skein modules 229
5.4.2 The Schrödinger representation in the topological perspective .. 234
5.4.3 The action of the mapping class group on theta functions in the topological perspective 241

6. Some results about 3- and 4-dimensional manifolds 251
6.1 3-dimensional manifolds obtained from Heegaard decompositions and surgery .. 251
6.1.1 The Heegaard decompositions of a 3-dimensional manifold .. 251
6.1.2 3-dimensional manifolds obtained from surgery .. 253
6.2 The interplay between 3-dimensional and 4-dimensional topology .. 261
6.2.1 3-dimensional manifolds are boundaries of 4-dimensional handlebodies .. 261
6.2.2 The signature of a 4-dimensional manifold .. 268
6.3 Changing the surgery link .. 274
6.3.1 Handle slides .. 274
6.3.2 Kirby’s theorem .. 279
6.4 Surgery for 3-dimensional manifolds with boundary 288
6.4.1 A relative version of Kirby’s theorem .. 288
6.4.2 Cobordisms via surgery .. 295
6.5 Wall’s formula for the nonadditivity of the signature of 4-dimensional manifolds .. 303
6.5.1 Lagrangian subspaces in the boundary of a 3-dimensional manifold .. 303
6.5.2 Wall’s theorem .. 305
6.6 The structure of the linking number skein module of a 3-dimensional manifold .. 312

7. The discrete Fourier transform and topological quantum field theory 321
7.1 The discrete Fourier transform and handle slides 321
Contents

7.1.1 The discrete Fourier transform as a skein 321
7.1.2 The exact Egorov identity and handle slides 327
7.2 The Murakami-Ohtsuki-Okada invariant of a closed 3-
dimensional manifold 330
7.2.1 The construction of the invariant 330
7.2.2 The computation of the invariant 332
7.3 The reduced linking number skein module of a 3-
dimensional manifold 340
7.3.1 The Sikora isomorphism 340
7.3.2 The computation of the reduced linking number
skein module of a 3-dimensional manifold 343
7.4 The 4-dimensional manifolds associated to discrete Fourier
transforms .. 348
7.4.1 Fourier transforms from general surgery diagrams 348
7.4.2 A topological solution to the projectivity problem
of the representation of the mapping class group
on theta functions 350
7.5 Theta functions and topological quantum field theory .. 361
7.5.1 Empty skeins and the emergence of topological
quantum field theory 361
7.5.2 Atiyah's axioms for a topological quantum field
theory .. 363
7.5.3 The functor from the category of extended surfaces
to the category of finite-dimensional vector spaces 365
7.5.4 The topological quantum field theory underlying
the theory of theta functions 369

8. Theta functions in the quantum group perspective 383
8.1 Quantum groups 384
8.1.1 The origins of quantum groups 384
8.1.2 Quantum groups as Hopf algebras 387
8.1.3 The Yang-Baxter equation and the universal R-
matrix ... 393
8.1.4 Link invariants and ribbon Hopf algebras 401
8.2 The quantum group associated to classical theta functions 415
8.2.1 The quantum group and its representation theory 415
8.2.2 The quantum group of theta functions is a quasi-
triangular Hopf algebra 417
8.2.3 The quantum group of theta functions is a ribbon Hopf algebra ... 420
8.3 Modeling theta functions using the quantum group 425
 8.3.1 The relationship between the linking number and the quantum group 426
 8.3.2 Theta functions as colored oriented framed links in a handlebody 429
 8.3.3 The Schrödinger representation and the action of the mapping class group via quantum group representations ... 430

9. An epilogue – Abelian Chern-Simons theory 437
 9.1 The Jacobian variety as a moduli space of connections ... 437
 9.2 Weyl quantization versus quantum group quantization of the Jacobian variety 441

Bibliography 445

Index 451