## Contents

**Series Preface**

**Preface**

**Editors**

**Contributors**

**Chapter 1** Introduction 1  
*Prabir K. Sarkar and M. J. Robert Nout*  
References 6

**Chapter 2** Diversity of Plant-Based Food Products Involving Alkaline Fermentation 7  
2.1 Legume Products 7  
2.1.1 Soybean Products 8  
2.1.1.1 Natto 8  
*Toshirou Nagai*  
2.1.1.1.1 History 10  
2.1.1.1.2 Starter Culture 12  
2.1.1.1.3 Fermentation 13  
2.1.1.1.4 Nutritional and Chemical Components 14  
2.1.1.1.5 Consumption 17  
2.1.1.1.6 Conclusion 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.2</td>
<td>Douchi</td>
<td>18</td>
</tr>
<tr>
<td>2.1.1.2.1</td>
<td>Origin of Douchi</td>
<td>18</td>
</tr>
<tr>
<td>2.1.1.2.2</td>
<td>Classification</td>
<td>20</td>
</tr>
<tr>
<td>2.1.1.2.3</td>
<td>Production Methods</td>
<td></td>
</tr>
<tr>
<td>2.1.1.2.3.1</td>
<td>Pre-Treatment</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1.2.3.2</td>
<td>Pre-Fermentation</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1.2.3.3</td>
<td>Post-Fermentation</td>
<td>27</td>
</tr>
<tr>
<td>2.1.1.2.4</td>
<td>Chemical and Nutritional Components</td>
<td>28</td>
</tr>
<tr>
<td>2.1.1.2.5</td>
<td>Functional Properties</td>
<td>31</td>
</tr>
<tr>
<td>2.1.1.2.6</td>
<td>Consumption and Perspectives</td>
<td>31</td>
</tr>
<tr>
<td>2.1.1.3</td>
<td>Kinema and Similar Products</td>
<td>33</td>
</tr>
<tr>
<td>2.1.1.3.1</td>
<td>Origin and Culture</td>
<td>33</td>
</tr>
<tr>
<td>2.1.1.3.2</td>
<td>Indigenous Preparation of Kinema and Its Socio-Economic Impact</td>
<td>36</td>
</tr>
<tr>
<td>2.1.1.3.3</td>
<td>Changes in the Substrate during Kinema Production</td>
<td></td>
</tr>
<tr>
<td>2.1.1.3.3.1</td>
<td>Stage 1: Soaking</td>
<td>38</td>
</tr>
<tr>
<td>2.1.1.3.3.2</td>
<td>Stage 2: Cooking</td>
<td>38</td>
</tr>
<tr>
<td>2.1.1.3.3.3</td>
<td>Stage 3: Fermentation</td>
<td>39</td>
</tr>
<tr>
<td>2.1.1.3.4</td>
<td>Safety of Kinema</td>
<td>50</td>
</tr>
<tr>
<td>2.1.1.3.5</td>
<td>Plasmid for γ-Polyglutamate Production</td>
<td>50</td>
</tr>
<tr>
<td>2.1.1.3.6</td>
<td>Process/Product Improvisation</td>
<td>51</td>
</tr>
<tr>
<td>2.1.1.3.7</td>
<td>Development of Kinema Starter</td>
<td>52</td>
</tr>
<tr>
<td>2.1.1.3.8</td>
<td>Development of Kinema-Fortified Cookies</td>
<td>52</td>
</tr>
<tr>
<td>2.1.1.3.9</td>
<td>Conclusion</td>
<td>53</td>
</tr>
</tbody>
</table>
2.1.1.4 Doenjang

Kun-Young Park and Ji-Kang Jeong

2.1.1.4.1 Manufacturing Procedures 54
2.1.1.4.2 Microorganisms in Doenjang 56
2.1.1.4.3 Functional Properties 58
2.1.1.4.4 Conclusion 63

2.1.1.5 Chongkukjang

Jang-Eun Lee, Ggot-Im Lee, and Cherl-Ho Lee

2.1.1.5.1 Origin of Chongkukjang 63
2.1.1.5.2 Methods of Preparation 64
2.1.1.5.3 Biochemical Composition 65
2.1.1.5.4 Usage and Function 68
2.1.1.5.5 Safety Aspects 69

2.1.1.6 Thua Nao

Ekachai Chukeatirote

2.1.1.6.1 Conventional Preparation of Thua Nao 72
2.1.1.6.2 Biochemistry and Microbiology 73
2.1.1.6.3 Nutritional Quality 74
2.1.1.6.4 Conclusion 75

2.1.1.7 Meitauza

Li-Te Li and Yan-Li Ma

2.1.1.7.1 Okara: The Raw Material of Meitauza Production 76
2.1.1.7.2 Production Methods of Meitauza 77
2.1.1.7.3 Microbiology of Meitauza Production 79
2.1.1.7.4 Chemical Changes Accompanying Meitauza Production 79
2.1.1.7.5 Nutrition and Functionality of Meitauza 82
2.1.1.7.6 Problems about Meitauza Production 85
2.1.1.7.7 Consumption and Prospects of Meitauza 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Author(s)</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1.8</td>
<td>Yandou</td>
<td>Hongjiang Yang</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>2.1.1.8.1 History</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>2.1.1.8.2 Manufacturing Procedure</td>
<td></td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>2.1.1.8.3 Starter Culture</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>2.1.1.8.4 Nutritional and Physicochemical Characteristics</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Non-Soybean Products</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>2.1.2.1</td>
<td>Dawadawa (Iru) and Similar Products</td>
<td>Olusola Bandele Oyewole, Adewale Olusegun Obadina, and Paulin Azokpota</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.1 Antiquity</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.2 Traditional Method of Production</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.3 Starters</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.4 Microbial Succession</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.5 Chemical Changes</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.6 Volatile Compounds Profile</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>2.1.2.1.7 Culinary Practice and Economics</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>2.1.2.2</td>
<td>Ugba</td>
<td>Abiodun Isiaka Sanni and Folarin Anthony Oguntoyinbo</td>
<td>102</td>
</tr>
<tr>
<td>2.1.2.3</td>
<td>Kawal</td>
<td>Abiodun Isiaka Sanni and Folarin Anthony Oguntoyinbo</td>
<td>107</td>
</tr>
<tr>
<td>2.1.2.4</td>
<td>Okpehe</td>
<td>Abiodun Isiaka Sanni and Folarin Anthony Oguntoyinbo</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>2.1.2.4.1 Traditional Method of Preparation</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>2.1.2.4.2 Microbiology</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>2.1.2.4.3 Nutritional Value</td>
<td></td>
<td>113</td>
</tr>
<tr>
<td>2.1.2.5</td>
<td>Otiru</td>
<td>Yemisi Adefunke Jeff-Agboola</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>2.1.2.5.1 Traditional Process of Otiru Production</td>
<td></td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>2.1.2.5.2 Microorganisms</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>2.1.2.5.3 Changes in Proximate Composition</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>2.1.2.6</td>
<td>Oso</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Olusola Bandele Oyewole and Adewale Olusegun Obadina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2.6.1</td>
<td>Traditional Method of Production</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>2.1.2.6.2</td>
<td>Chemical and Microbial Succession and Composition</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Non-Legume Products</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>Ogiri</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td>Maureen-Theodore Chinwe Ojinnaka</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Microorganisms Involved in Traditional Fermentation</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Nutritional Value</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Enzymes Involved during Fermentation</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>2.2.1.4</td>
<td>Ammonia and Ricin Contents in Ogiri</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>2.2.1.5</td>
<td>Organic Acid Contents and Volatile Compounds in Fermenting Mash</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>2.2.1.6</td>
<td>Conclusion</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td>Bikalga/Furundu/Mbuja</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>Labia Irène Ivette Ouoba</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Traditional Technology for Production and Product Utilization</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>2.2.2.2</td>
<td>Physicochemical and Nutritional Characteristics</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>2.2.2.3</td>
<td>Microbiology of Fermentation</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>2.2.2.4</td>
<td>Safety</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>2.2.2.5</td>
<td>Functional Properties</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>2.2.2.6</td>
<td>Conclusion</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>2.2.3</td>
<td>Maari/Dikouanyouri/Tayohounta</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Abiodun Isiaka Sanni and Folarin Anthony Oguntoyinbo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.4</td>
<td>Ntoba Mbodi</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Abiodun Isiaka Sanni and Folarin Anthony Oguntoyinbo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.5</td>
<td>Cabuk</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Kris Herawan Timotius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Substrates of Cabuk</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Preparation of Cabuk</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>Microorganisms Involved</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>
2.2.5.4 Changes Accompanying Cabuk Production 147
2.2.5.5 Prospects of Cabuk 147

2.2.6 Semayi 148

Kris Herawan Timotius
2.2.6.1 Ampas Kelapa – The Substrate of Semayi 148
2.2.6.2 How to Make Semayi 149
2.2.6.3 Microbiology of Semayi 150
2.2.6.4 Changes in Proximate Composition during Fermentation 150

2.2.7 Owoh 151

Abiodun Isiaka Sanni and Folarin Anthony Oguntoyinbo
2.2.8 Salt Rising Bread 154

Susan Ray Brown and Genevieve Bardwell
2.2.8.1 History 155
2.2.8.2 Science 157
2.2.8.3 Baking Methods 159
2.2.8.4 Conclusion 161

References 162

Chapter 3 Diversity of Animal-Based Food Products Involving Alkaline Fermentation 189
3.1 Fish Sauces and Pastes 189

Wonnop Visessanguan and Siriporn Chaikaew
3.1.1 Garum (Italy and Greece) 191
3.1.2 Terkin (Sudan and Central Africa) 192
3.1.3 Mahyaveh (Iran) 193
3.1.4 Ngari (India) 194
3.1.5 Hentak (India) 194
3.1.6 Tungtap (India) 195
3.1.7 Jaadi (Sri Lanka) 195
3.1.8 Ngapi and Ngan-Byar-Yay (Myanmar) 195
3.1.9 Nam Pla (Thailand) 197
3.1.10 Kapi Plaa (Thailand) 199
3.1.11 Tai Plaa (Thailand) 199
3.1.12 Budu (Thailand and Malaysia) 200
3.1.13 Prahok (Cambodia) 202
3.1.14 Nuoc-Mam (Vietnam) 202
3.1.15 Bakasang (Indonesia) 203
3.1.16 Terasi Ikan (Indonesia) 204
3.1.17 Wadi Betok (Indonesia) 205
3.1.18 Kecap Ikan (Indonesia) 205
3.1.19 Pedah (Indonesia) 206
CONTENTS

3.1.20 Bagoong and Patis (Philippines) 206
3.1.21 Bagoong Isda (Philippines) 207
3.1.22 Yu-Lu (China) 208
3.1.23 Shotetsuru (Japan) 209
3.1.24 Ikanago Shoyu (Japan) 210
3.1.25 Konago (Japan) 210
3.1.26 Jeotkal (Korea) 210

3.2 Shellfish Products 211

Wonnop Visessanguan and Siriporn Chaikaew

3.2.1 Shrimp/Krill Paste 212
  3.2.1.1 Bagoong (Philippines) 212
  3.2.1.2 Belacan (Malaysia) 213
  3.2.1.3 Kapi (Thailand and Cambodia) 215
  3.2.1.4 Mam Ruoc and Mam Tom (Vietnam) 216
  3.2.1.5 Nappi (Bangladesh) 217
  3.2.1.6 Ngapi (Myanmar) 217
  3.2.1.7 Terasi Udang (Indonesia) 218

3.2.2 Shrimp/Krill Sauce 219
  3.2.2.1 Nam-Poo (Thailand) 219
  3.2.2.2 Nan Ji Xia Jiang Zhi (Taiwan) 220
  3.2.2.3 Ngan Pya Ye (Myanmar) 220
  3.2.2.4 Xia You (Taiwan) 221

3.2.3 Other Shellfish Products 221
  3.2.3.1 Ogiri-Nsiko (Nigeria) 221
  3.2.3.2 Jeotgal (Korea) 221
  3.2.3.3 Shiokara (Japan) 223

3.3 Hongeohoe 224

Ggot-Im Lee and Cherl-Ho Lee

3.3.1 Manufacturing Process of Hongeohoe 225
3.3.2 Chemical Composition and Physiological Function 226
3.3.3 Microbial and Chemical Changes 227
3.3.4 Safety Aspects and HACCP 227
3.3.5 Conclusion 228

3.4 Pidan 228

Soottawat Benjakul and Palanivel Ganesan

3.4.1 Manufacturing of Pidan 229
  3.4.1.1 Traditional Processing 230
    3.4.1.1.1 Rolling Powder Method 230
    3.4.1.1.2 Coating Method 231
    3.4.1.1.3 Immersion Method 232
  3.4.1.2 Commercial and Novel Processing of Pidan 232
    3.4.1.2.1 Production of Pidan 232
    3.4.1.2.2 Coating of Pidan 234
3.4.2 Characteristics of Pidan
3.4.2.1 Textural Property
3.4.2.2 Color
3.4.2.3 Odor
3.4.2.4 Pine-Floral Crystal
3.4.3 Lysinoalanine Formation in Pidan
3.4.4 Nutritive Value of Pidan
3.4.4.1 Amino Acids
3.4.4.2 Minerals
3.4.4.3 Lipid and Cholesterol

References

Chapter 4 Microorganisms Predominating in Alkaline-Fermented Foods
4.1 Bacillus and Related Genera
Charles Parkouda, Bréhima Diawara, and Kwaku Tano-Debrah
4.1.1 Biodiversity
4.1.2 Taxonomic Characteristics
4.1.2.1 Phenotypic Characteristics
4.1.2.1.1 Morphological Characteristics
4.1.2.1.2 Biochemical, Physiological, and Metabolic Characteristics
4.1.2.2 Molecular Characteristics
4.1.2.2.1 Genotypic Grouping Methods
4.1.2.2.2 Gene Sequencing
4.1.2.2.3 Culture-Independent Method
4.1.3 Ecology
4.1.4 Metabolism

4.2 Lactic Acid Bacteria
Donatien Kaboré and Charles Parkouda
4.2.1 Biodiversity
4.2.2 Taxonomic Characteristics
4.2.3 Ecology
4.2.4 Metabolism
4.2.5 Genomics

4.3 Yeasts
Line Thorsen, Elmer Nayra Kpikpi, and Lene Jespersen
4.3.1 Taxonomy, Ecology, and Functionality of Yeasts
4.3.2 Yeasts in Legume-Based Alkaline-Fermented Foods
CONTENTS

4.3.2.1 Soybean Products 282
4.3.2.2 Non-Soybean Legume Products 289
4.3.3 Yeasts in Non-Legume Plant-Based Food Products 291
4.3.4 Yeasts in Animal-Based Alkaline Food Products 292
4.3.5 Current Use and Perspectives for Application of Yeasts in Alkaline-Fermented Foods 294

References 295

Chapter 5 Quality Aspects of Alkaline-Fermented Foods 315

5.1 Sensory Characteristics 315
Paulin Azokpota

5.2 Nutritional Value 321
Shawn Mark Somerset

5.2.1 Asian Foods 324
5.2.2 African Foods 326
5.2.3 Other Putative Health Benefits 329
5.2.4 Reliability of Alkaline-Fermented Food Compositional Data 330
5.2.5 Conclusion 333

5.3 Health-Promoting Effects 334

5.3.1 Reduction of Anti-Nutritional Factors 334
Paulin Azokpota

5.3.2 Production of Vitamins 337
Paulin Azokpota

5.3.3 Increase in Digestibility 338
Paulin Azokpota

5.3.4 Medicinal Benefits 342

5.3.4.1 Antioxidative Activity 342
Toshirou Nagai

5.3.4.2 Probiotic Activity 346
Toshirou Nagai

5.3.4.2.1 Antibacterial Activity of Bacillus subtilis (natto) 346
5.3.4.2.2 Probiotic Activities of Bacillus subtilis (natto) 347
5.3.4.2.3 Behavior of Bacillus subtilis (natto) in Digestive System 349
5.3.4.2.4 Conclusion 351
5.3.4.3 Immunomodulating Activity 351
   Toshirou Nagai
   5.3.4.3.1 Nonspecific Immunity
   Conferred by Bacillus subtilis (natto) 351
   5.3.4.3.2 Mechanism of
   Immunomodulation 352
   5.3.4.3.3 Anti-Tumor Activity 354
   5.3.4.3.4 Conclusion 355

5.3.4.4 Fibrinolytic Activity 355
   Toshirou Nagai

5.3.4.5 Anti-α-Glucosidase
   (Antidiabetic) Activity 359
   Li-Te Li and Yan-Li Ma
   5.3.4.5.1 Diabetes Mellitus 359
   5.3.4.5.2 α-Glucosidase
   Inhibitors and
   Diabetes Mellitus 360
   5.3.4.5.3 Main Source of
   α-Glucosidase
   Inhibitors 362
   5.3.4.5.4 α-Glucosidase
   Inhibitory Activity of
   Alkaline-Fermented
   Foods 363
   5.3.4.5.5 Prospects 365

5.3.4.6 Antihypertensive Activity 365
   Li-Te Li and Yan-Li Ma
   5.3.4.6.1 Hypertension 365
   5.3.4.6.2 Angiotensin-
   Converting Enzyme
   Inhibitors and
   Hypertension 366
   5.3.4.6.3 ACE Inhibitory
   Peptides Derived from
   Fermented Foods 368
   5.3.4.6.4 ACE Inhibitory
   Activity of Alkaline-
   Fermented Foods 370
   5.3.4.6.5 Prospects 372

5.3.4.7 Tooth Enamel Hardness 373
   Chanya Chuenarrom

References 379
Chapter 6  Safety Aspects of Alkaline-Fermented Foods

Ggot-Im Lee and Cherl-Ho Lee

6.1 Alkaline-Fermented Foods Are Generally Safe 399
  6.1.1 Initial Thermal Treatment 400
  6.1.2 Growth of Bacillus subtilis 401
  6.1.3 pH Change 404
  6.1.4 Cooking Process 405

6.2 Hazards in Alkaline-Fermented Foods 405
  6.2.1 Microbiological Hazards 405
    6.2.1.1 Bacillus cereus 405
    6.2.1.2 Other Potential Pathogens 406
    6.2.1.3 Mycotoxins 407
  6.2.2 Chemical Hazards: Biogenic Amines 410

6.3 Control of Hazards 415
  6.3.1 GAP 415
  6.3.2 HACCP 415

6.4 Conclusion 418

References 419

Chapter 7  Challenges Associated with Technological Aspects for Modernization of Alkaline-Fermented Foods

7.1 Modulation of Product Chains 425

Anita R. Linnemann

7.1.1 Key Determinants of Successful Modernization of Traditional Foods 425
7.1.2 How to Determine Consumer Preferences 426
7.1.3 Applying a Chain Approach to Ensure Constant Product Quality 429
7.1.4 Benchmarking 431
7.1.5 Conclusion 432

7.2 Development of Starter Cultures 432

Egon Bech Hansen

7.2.1 Food Fermentation and Food Cultures 432
  7.2.1.1 Microorganisms Used in Food Fermentations 433
  7.2.1.2 Inoculation for Food Fermentations 434
  7.2.1.3 Requirements for a Starter Culture 436
  7.2.1.4 Suppliers of Starter Cultures 438
  7.2.2 Starters for Alkaline-Fermented Foods 439
    7.2.2.1 Potential Improvements of Inoculation Practice 439
7.2.2.2 Development and Production of Starter Cultures for Alkaline-Fermented Foods 440

7.2.3 Conclusion 441

7.3 Hygienic Design Aspects of Alkaline Fermentation Processes 441

Huub L. M. Lelieveld

7.3.1 Chemical Contamination 442
7.3.2 Physical Contamination 443
7.3.3 Microbial Contamination 444
7.3.4 Managing Food Safety 444
7.3.5 Hygienic Processing and Plant Design 445
7.3.5.1 Construction Materials 446
7.3.5.2 Surface Roughness 447
7.3.5.3 Drainability 447
7.3.5.4 Dead Spaces 447
7.3.5.5 Crevices and Corners 448
7.3.5.6 Pipe Connections 449
7.3.5.7 Preventing Ingress of Contamination 449
7.3.5.8 Inoculation and Sampling 449
7.3.5.9 Continuous Fermentation 450
7.3.5.10 Conveyor Belts for Solid-State Fermentations 450
7.3.5.11 Process Control 451
7.3.5.12 Equipment Installation 451

7.3.6 Further Reading 452

7.4 Food Packaging

Jenneke K. Heising and Matthijs Dekker

7.4.1 Challenges 453
7.4.2 Basic Functions of Food Packaging 454
7.4.2.1 Containment 454
7.4.2.2 Protection 455
7.4.2.3 Convenience 456
7.4.2.4 Communication 456
7.4.3 Interactions between Food and Package: Flavor Scalping and Migration 457
7.4.4 Interactions between Packaging and Environment 458
7.4.5 Packaging Materials 459
7.4.6 Fermentation in Package 462
7.4.7 Case: Application of a Package on the Product Kinema 462
7.4.7.1 Product Description 462
7.4.7.2 Traditional Package 463
7.4.7.3 Package Requirements 463
7.4.8 Conclusion 464

References 464
Chapter 8  Value-Added Products from Alkaline-Fermented Foods or from Microorganisms Predominating Therein

8.1 Alkaline Proteases

C. Ganesh Kumar

8.1.1 Alkalophilic Microorganisms and Their Habitats

8.1.2 Isolation and Screening of Alkalophiles

8.1.3 Production of Alkaline Proteases

8.1.3.1 Improvement in Alkaline Protease Yields

8.1.3.2 Regulation and Medium Optimization for Protease Biosynthesis

8.1.3.2.1 Nitrogen Source

8.1.3.2.2 Carbon Source

8.1.3.2.3 Trace Salt Requirement

8.1.3.2.4 pH and Temperature

8.1.3.2.5 Statistical Design-Based Optimization

8.1.4 Purification and Characterization of Alkaline Proteases

8.1.5 Applications of Alkaline Proteases

8.2 Poly-γ-Glutamic Acid

Toshirou Nagai

8.2.1 PGA Produced on Natto

8.2.2 Role of Natto Plasmid and γ-Glutamyl Transferase in PGA Production

8.2.3 Genes Related to the Production of PGA

8.2.4 PGA Resin

8.2.5 PGA-Decomposing Enzymes

8.2.5.1 Bacillus subtilis (natto) Bacteriophages and Their PGA-Depolymerizing Enzymes

8.2.5.2 YwtD, γ-DL-Glutamyl Hydrolase of Bacillus subtilis (natto)

8.2.6 PGA-Decomposing Enzymes from Other Sources

8.2.7 Conclusion

8.3 Lipopeptides

Philippe Jacques and Aly Savadogo

8.3.1 Microbial Lipopeptides

8.3.2 Lipopeptides and Fermented Food Products

8.3.3 Structures of Lipopeptides Produced by Strains Isolated from Fermented Products
CONTENTS

8.3.4 Biological Activities of Lipopeptides 513
8.3.5 Biosynthesis 514
8.3.6 Regulation and Influence of Environmental Factors on Lipopeptide Production 515
8.3.7 Potential Role of Lipopeptide in Fermented Products 517

8.4 Short-Chain Volatile Organic Acids and Various Other Organic Compounds 518
Maureen-Theodore Chinwe Ojinnaka

8.5 Flavor Additives 522
Maureen-Theodore Chinwe Ojinnaka

8.5.1 Esters 524
8.5.2 Acids 525
8.5.3 Pyrazines 526
8.5.4 Aldehydes 527
8.5.5 Furan 527
8.5.6 Ketones 527
8.5.7 Sulfur-Containing Compounds 528
References 528

Chapter 9 Future of Alkaline-Fermented Foods for Traditional Markets 559
M. J. Robert Nout and Prabir K. Sarkar
References 561

Chapter 10 Outlook 563
M. J. Robert Nout and Prabir K. Sarkar
References 565

Index 567