Set-valued Optimization

An Introduction with Applications
Contents

1 Introduction ... 1
 1.1 Motivating Examples .. 1
 1.2 Book Structure .. 4
 1.3 Useful Notation .. 9

2 Order Relations and Ordering Cones 11
 2.1 Order Relations .. 11
 2.2 Cone Properties Related to the Topology and the Order 17
 2.3 Convexity Notions for Sets and Set-Valued Maps 22
 2.4 Solution Concepts in Vector Optimization 28
 2.5 Vector Optimization Problems with Variable Ordering
 Structure .. 43
 2.6 Solution Concepts in Set-Valued Optimization 45
 2.6.1 Solution Concepts Based on Vector Approach 45
 2.6.2 Solution Concepts Based on Set Approach 48
 2.6.3 Solution Concepts Based on Lattice Structure 55
 2.6.4 The Embedding Approach by Kuroiwa 65
 2.6.5 Solution Concepts with Respect to Abstract
 Preference Relations ... 67
 2.6.6 Set-Valued Optimization Problems
 with Variable Ordering Structure 70
 2.6.7 Approximate Solutions of Set-Valued
 Optimization Problems ... 73
 2.7 Relationships Between Solution Concepts 74

3 Continuity and Differentiability 77
 3.1 Continuity Notions for Set-Valued Maps 77
 3.2 Continuity Properties of Set-Valued Maps Under
 Convexity Assumptions ... 90
 3.3 Lipschitz Properties for Single-Valued and Set-Valued Maps 96
 3.4 Clarke’s Normal Cone and Subdifferential 102
3.5 Limiting Cones and Generalized Differentiability ... 103
3.6 Approximate Cones and Generalized Differentiability 107

4 Tangent Cones and Tangent Sets ... 109
4.1 First-Order Tangent Cones ... 110
 4.1.1 The Radial Tangent Cone and the Feasible Tangent Cone 110
 4.1.2 The Contingent Cone and the Interiorly Contingent Cone 112
 4.1.3 The Adjacent Cone and the Interiorly Adjacent Cone 120
4.2 Modified First-Order Tangent Cones ... 123
 4.2.1 The Modified Radial and the Modified Feasible Tangent Cones 124
 4.2.2 The Modified Contingent and the Modified Interiorly Contingent Cones 124
 4.2.3 The Modified Adjacent and the Modified Interiorly Adjacent Cones 126
4.3 Miscellaneous Properties of First-Order Tangent Cones 129
4.4 First-Order Tangent Cones on Convex Sets ... 132
 4.4.1 Connections Among First-Order Tangent Cones on Convex Sets 132
 4.4.2 Properties of First-Order Tangent Cones on Convex Sets 137
4.5 First-Order Local Cone Approximation .. 143
4.6 Convex Subcones of the Contingent Cone .. 147
4.7 First-Order Inversion Theorems and Intersection Formulas 156
4.8 Expressions of the Contingent Cone on Some Constraint Sets 161
4.9 Second-Order Tangent Sets ... 169
 4.9.1 Second-Order Radial Tangent Set and Second-Order Feasible Tangent Set 170
 4.9.2 Second-Order Contingent Set and Second-Order Interiorly Contingent Set 170
 4.9.3 Second-Order Adjacent Set and Second-Order Interiorly Adjacent Set 173
4.10 Generalized Second-Order Tangent Sets .. 175
4.11 Second-Order Asymptotic Tangent Cones .. 181
 4.11.1 Second-Order Asymptotic Feasible Tangent Cone and Second-Order Asymptotic Radial Tangent Cone 182
 4.11.2 Second-Order Asymptotic Contingent Cone and Second-Order Asymptotic Interiorly Contingent Cone 183
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.11.3</td>
<td>Second-Order Asymptotic Adjacent Cone and Second-Order Asymptotic Interiorly Adjacent Cone</td>
<td>185</td>
</tr>
<tr>
<td>4.12</td>
<td>Miscellaneous Properties of Second-Order Tangent Sets and Second-Order Asymptotic Tangent Cones</td>
<td>187</td>
</tr>
<tr>
<td>4.13</td>
<td>Second-Order Inversion Theorems</td>
<td>192</td>
</tr>
<tr>
<td>4.14</td>
<td>Expressions of the Second-Order Contingent Set on Specific Constraints</td>
<td>197</td>
</tr>
<tr>
<td>4.15</td>
<td>Miscellaneous Second-Order Tangent Cones</td>
<td>202</td>
</tr>
<tr>
<td>4.15.1</td>
<td>Second-Order Tangent Cones of Ledzewicz and Schaettler</td>
<td>202</td>
</tr>
<tr>
<td>4.15.2</td>
<td>Projective Tangent Cones of Second-Order</td>
<td>204</td>
</tr>
<tr>
<td>4.15.3</td>
<td>Second-Order Tangent Cone of N. Pavel</td>
<td>206</td>
</tr>
<tr>
<td>4.15.4</td>
<td>Connections Among the Second-Order Tangent Cones</td>
<td>207</td>
</tr>
<tr>
<td>4.16</td>
<td>Second-Order Local Approximation</td>
<td>207</td>
</tr>
<tr>
<td>4.17</td>
<td>Higher-Order Tangent Cones and Tangent Sets</td>
<td>210</td>
</tr>
<tr>
<td>5</td>
<td>Nonconvex Separation Theorems</td>
<td>213</td>
</tr>
<tr>
<td>5.1</td>
<td>Separating Functions and Examples</td>
<td>213</td>
</tr>
<tr>
<td>5.2</td>
<td>Nonlinear Separation</td>
<td>217</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Construction of Scalarizing Functionals</td>
<td>217</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Properties of Scalarization Functions</td>
<td>219</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Continuity Properties</td>
<td>224</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Lipschitz Properties</td>
<td>225</td>
</tr>
<tr>
<td>5.2.5</td>
<td>The Formula for the Conjugate and Subdifferential of φ_A for A Convex</td>
<td>231</td>
</tr>
<tr>
<td>5.3</td>
<td>Scalarizing Functionals by Hiriart-Urruty and Zaffaroni</td>
<td>232</td>
</tr>
<tr>
<td>5.4</td>
<td>Characterization of Solutions of Set-Valued Optimization Problems by Means of Nonlinear Scalarizing Functionals</td>
<td>236</td>
</tr>
<tr>
<td>5.4.1</td>
<td>An Extension of the Functional φ_A</td>
<td>236</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Characterization of Solutions of Set-Valued Optimization Problems with Lower Set Less Order Relation \preceq_C^l by Scalarization</td>
<td>240</td>
</tr>
<tr>
<td>5.5</td>
<td>The Extremal Principle</td>
<td>244</td>
</tr>
<tr>
<td>6</td>
<td>Hahn-Banach Type Theorems</td>
<td>249</td>
</tr>
<tr>
<td>6.1</td>
<td>The Hahn–Banach–Kantorovich Theorem</td>
<td>250</td>
</tr>
<tr>
<td>6.2</td>
<td>Classical Separation Theorems for Convex Sets</td>
<td>258</td>
</tr>
<tr>
<td>6.3</td>
<td>The Core Convex Topology</td>
<td>261</td>
</tr>
<tr>
<td>6.4</td>
<td>Yang's Generalization of the Hahn–Banach Theorem</td>
<td>264</td>
</tr>
<tr>
<td>6.5</td>
<td>A Sufficient Condition for the Convexity of $\mathbb{R}_+ A$</td>
<td>271</td>
</tr>
</tbody>
</table>
7 Conjugates and Subdifferentials .. 275
 7.1 The Strong Conjugate and Subdifferential 275
 7.2 The Weak Subdifferential ... 288
 7.3 Subdifferentials Corresponding to Henig Proper Efficiency 296
 7.4 Exact Formulas for the Subdifferential of the Sum and the Composition ... 298

8 Duality ... 307
 8.1 Duality Assertions for Set-Valued Problems Based on Vector Approach ... 308
 8.1.1 Conjugate Duality for Set-Valued Problems Based on Vector Approach .. 308
 8.1.2 Lagrange Duality for Set-Valued Optimization Problems Based on Vector Approach 313
 8.2 Duality Assertions for Set-Valued Problems Based on Set Approach ... 317
 8.3 Duality Assertions for Set-Valued Problems Based on Lattice Structure ... 322
 8.3.1 Conjugate Duality for \(\mathcal{F} \)-Valued Problems 323
 8.3.2 Lagrange Duality for \(\mathcal{F} \)-Valued Problems 326
 8.4 Comparison of Different Approaches to Duality in Set-Valued Optimization ... 338
 8.4.1 Lagrange Duality ... 339
 8.4.2 Subdifferentials and Stability 341
 8.4.3 Duality Statements with Operators as Dual Variables 345

9 Existence Results for Minimal Points ... 349
 9.1 Preliminary Notions and Results Concerning Transitive Relations ... 349
 9.2 Existence of Minimal Elements with Respect to Transitive Relations ... 352
 9.3 Existence of Minimal Points with Respect to Cones 355
 9.4 Types of Convex Cones and Compactness with Respect to Cones ... 360
 9.5 Existence of Optimal Solutions for Vector and Set Optimization Problems ... 362

10 Ekeland Variational Principle ... 369
 10.1 Preliminary Notions and Results .. 369
 10.2 Minimal Points in Product Spaces 373
 10.3 Minimal Points in Product Spaces of Isac–Tammer’s Type 381
 10.4 Ekeland’s Variational Principles of Ha’s Type 384
 10.5 Ekeland’s Variational Principle for Bi-Set-Valued Maps 390
 10.6 EVP Type Results .. 391
 10.7 Error Bounds ... 394
11 Derivatives and Epiderivatives of Set-Valued Maps ... 399
11.1 Contingent Derivatives of Set-Valued Maps ... 400
11.1.1 Miscellaneous Graphical Derivatives of Set-valued Maps 407
11.1.2 Convexity Characterization Using Contingent Derivatives 414
11.1.3 Proto-Differentiability, Semi-Differentiability, and Related Concepts 416
11.1.4 Weak Contingent Derivatives of Set-Valued Maps 422
11.1.5 A Lyusternik-Type Theorem Using Contingent Derivatives 426
11.2 Calculus Rules for Derivatives of Set-Valued Maps .. 428
11.2.1 Calculus Rules by a Direct Approach .. 429
11.2.2 Derivative Rules by Using Calculus of Tangent Cones 432
11.3 Contingently C-Absorbing Maps ... 437
11.4 Epiderivatives of Set-Valued Maps .. 445
11.4.1 Contingent Epiderivatives of Set-Valued Maps with Images in \(\mathbb{R} \) 446
11.4.2 Contingent Epiderivatives in General Spaces .. 452
11.4.3 Existence Theorems for Contingent Epiderivatives 457
11.4.4 Variational Characterization of the Contingent Epiderivatives 464
11.5 Generalized Contingent Epiderivatives of Set-Valued Maps 470
11.5.1 Existence Theorems for Generalized Contingent Epiderivatives 474
11.5.2 Characterizations of Generalized Contingent Epiderivatives 478
11.6 Calculus Rules for Contingent Epiderivatives ... 482
11.7 Second-Order Derivatives of Set-Valued Maps ... 488
11.8 Calculus Rules for Second-Order Contingent Derivatives 500
11.9 Second-Order Epiderivatives of Set-Valued Maps .. 504

12 Optimality Conditions in Set-Valued Optimization .. 509
12.1 First-Order Optimality Conditions by the Direct Approach 512
12.2 First-Order Optimality Conditions by the Dubovitskii-Milyutin Approach 522
12.2.1 Necessary Optimality Conditions by the Dubovitskii-Milyutin Approach 523
12.2.2 Inverse Images and Subgradients of Set-Valued Maps 527
12.2.3 Separation Theorems and the Dubovitskii-Milyutin Lemma 534
12.2.4 Lagrange Multiplier Rules
by the Dubovitskii-Milyutin Approach .. 537
12.3 Sufficient Optimality Conditions in Set-Valued Optimization 542
 12.3.1 Sufficient Optimality Conditions Under
 Convexity and Quasi-Convexity ... 542
 12.3.2 Sufficient Optimality Conditions Under
 Paraconvexity ... 545
 12.3.3 Sufficient Optimality Conditions Under
 Semidifferentiability ... 549
12.4 Second-Order Optimality Conditions in Set-Valued
 Optimization .. 549
 12.4.1 Second-Order Optimality Conditions
 by the Dubovitskii-Milyutin Approach 550
 12.4.2 Second-Order Optimality Conditions
 by the Direct Approach .. 554
12.5 Generalized Dubovitskii-Milyutin Approach
 in Set-Valued Optimization .. 557
 12.5.1 A Separation Theorem for Multiple Closed
 and Open Cones .. 559
 12.5.2 First-Order Generalized
 Dubovitskii-Milyutin Approach ... 562
 12.5.3 Second-Order Generalized
 Dubovitskii-Milyutin Approach .. 567
12.6 Set-Valued Optimization Problems with a Variable
 Order Structure .. 568
12.7 Optimality Conditions for Q-Minimizers
 in Set-Valued Optimization ... 572
 12.7.1 Optimality Conditions for Q-Minimizers
 Using Radial Derivatives .. 572
 12.7.2 Optimality Conditions for Q-Minimizers
 Using Coderivatives .. 574
12.8 Lagrange Multiplier Rules Based on Limiting Subdifferential ... 578
12.9 Necessary Conditions for Approximate Solutions
 of Set-Valued Optimization Problems 591
12.10 Necessary and Sufficient Conditions for Solution
 Concepts Based on Set Approach .. 594
12.11 Necessary Conditions for Solution Concepts
 with Respect to a General Preference Relation 598
12.12 KKT-Points and Corresponding Stability Results 600
13 Sensitivity Analysis in Set-Valued Optimization
 and Vector Variational Inequalities ... 605
 13.1 First Order Sensitivity Analysis in Set-Valued Optimization 606
 13.2 Second Order Sensitivity Analysis in Set-Valued
 Optimization .. 613
13.3 Sensitivity Analysis in Set-Valued Optimization UsingCoderivatives .. 623
13.4 Sensitivity Analysis for Vector Variational Inequalities 634

14 Numerical Methods for Solving Set-Valued Optimization Problems .. 645
14.1 A Newton Method for Set-Valued Maps 645
14.2 An Algorithm to Solve Polyhedral Convex Set-Valued
Optimization Problems ... 651
14.2.1 Formulation of the Polyhedral Convex
Set-Valued Optimization Problem 653
14.2.2 An Algorithm for Solving Polyhedral
Convex Set-Valued Optimization Problems 655
14.2.3 Properties of the Algorithm 658

15 Applications .. 663
15.1 Set-Valued Approaches to Duality in Vector Optimization 663
15.1.1 Fenchel Duality for Vector Optimization
Problems Using Corresponding Results
for \(\Phi \)-Valued Problems .. 667
15.1.2 Lagrange Duality for Vector Optimization
Problems Based on Results for \(\Phi \)-Valued Problems 670
15.1.3 Duality Assertions for Linear Vector
Optimization Based on Lattice Approach 677
15.1.4 Further Set-Valued Approaches to Duality
in Linear Vector Optimization 682
15.2 Applications in Mathematical Finance 696
15.3 Set-Valued Optimization in Welfare Economics 701
15.4 Robustness for Vector-Valued Optimization Problems 706
15.4.1 \(\preceq^\approx \varphi \)-Robustness 710
15.4.2 \(\preceq^C \)-Robustness 720
15.4.3 \(\preceq^\varepsilon \)-Robustness 722
15.4.4 Algorithms for Solving Special Classes
of Set-Valued Optimization Problems 724

Appendix ... 727

References .. 733

Index ... 759