Sustainability, Energy and Architecture
Case Studies in Realizing Green Buildings

Ali Sayigh
Preface xv
Authors’ Biography xvii

1. Dutch Efforts Towards a Sustainable Built Environment
 Wim Zei/er
 1.1 Introduction 1
 1.2 Passive Houses 6
 1.3 Types of Case Studies 7
 1.4 The Veldhuizerschool Ede 10
 1.5 Christiaan Huygens College: an Energy Plus School 10
 1.6 Conventional Dutch Building Design 12
 1.7 Energy Saving Techniques 13
 1.8 Novel Design and Examples 14
 1.9 The TNT Green Office 17
 1.10 Sustainability 19
 1.11 Diverse Sustainability Measures 20
 1.12 Results of GreenCalc+ and LEED Assessment 20

2. Low Energy Approaches to Design-Led Schemes – Five Case Studies
 Nazar Sayigh
 2.1 Introduction 28
 2.2 Case Studies 1 and 2 – Overview 28
 2.2.1 33–134 Webber Street – Case Study 1 28
 2.2.2 Stead Street Development, Southwark, London – Case Study 2 39
 2.3 Case Study 3 – Overview 45
 2.3.1 Multi-Purpose Hall, Tower House Scholl, Sheen, Richmond, London – Case Study 3 47
 2.4 Case Studies 4 & 5 – Overview 61
 2.4.1 Black Diamond House, Tutti Frutti, New Islington, Manchester – Case Study 4 61
 2.4.2 Unit 2, The Light Works, Brixton, London – Case Study 5 69
 2.5 Conclusion 77
3. Sustainable Construction Materials

Andrew Miller and Kenneth Ip

3.1 Introduction
3.1.1 World Resources

3.2 Demand for Construction Materials

3.3 Material Resources

3.4 Renewable Materials

3.5 Recycled Materials

3.6 Life Cycle Analysis

3.7 Embodied Energy

3.8 Gross Energy Requirement

3.9 Process Energy Requirement

3.10 Embodied Carbon

3.11 Natural Building Materials
3.11.1 Renewable Construction Materials: Timber

3.12 Short Rotation Renewable Materials
3.12.1 Hemp

3.13 Summary

4. The Sustainable Corporate Image and Renewables: From Technique to the Sensory Experience

Neveen Hamza

4.1 Introduction

4.2 Sustainable Innovation, or the Tried and Tested

4.3 The 20th Century, the Corporate Image and Sustainability

4.4 The Techno-Centric Sustainable Building in the 21st Century

4.5 The Sustainable Working Shed, Lion House, Alnwick, Northumberland, UK
3.5.1 Sustainable Architecture, An Experiential Sensory Approach

4.6 Experiencing Renewables in Building Skins

4.7 The Responsive Skin and Corporate Image

4.8 Increasing Facade Layers: Double Skin Facades as a Passive Measure and a Cultural Message

4.9 Sustainability as Haptic Experience

Conclusions

5. Residential Deep Energy Retrofits in Cold Climates

Shawna Henderson

5.1 Introduction

5.2 Building Materials and Assemblies
5.2.1 The Cost of Insulation vs. the Cost of Fuel

5.3 Ventilation and Air Movement

5.4 Case Studies
5.4.1 Case Study: A Larsen Truss ‘Chainsaw Retrofit’, Regina, Saskatchewan 120
5.4.2 Case Study: Interior Above and Below Grade Insulation, Halifax, Nova Scotia 123
5.4.3 Case Study: Exterior Insulation Above Grade/Interior Insulation Below Grade, Halifax, Nova Scotia and Utica, New York 126
5.5 Vision: Deep Energy Retrofits and Neighborhood Energy Systems 129
5.6 What Can We Do to Improve the Teaching of Architects? 130

Mohsen Aboulnaga
6.1. Introduction 132
6.1.1. The Dubai Story 135
6.2. Climate Change: Cities and Buildings 136
6.3. Importance of Sustainable/Green Building 138
6.4. Sustainability Regulations and Laws Contributing to Carbon Emissions Reduction 141
6.4.1. How does Dubai Measure Up? 141
6.4.2. Europe 142
6.4.3. The United Kingdom 142
6.4.4. Australia 143
6.4.5. New Zealand 145
6.4.6. Dubai Green Building Policy 146
6.4.7. Dubai’s Iconic Building—Burj Khalifa 147
6.5. Taxonomy of a Sustainable Building 148
6.6. Green Buildings in Dubai, UAE 150
6.6.2. Case Studies—Existing Buildings 157
6.7. Conclusions 163

7. The LED Lighting Revolution
Nada El-Zein
7.1 Introduction 172
7.1.1 History of LED (Light Emitting Diode) Technology and a Brief Technical Background 172
7.2 From LED Chips to Fixtures 177
7.2.1 Thermal Management 177
7.2.2 Drivers (also Transformer and Power Supply) 178
7.3 Optics 178
7.4 Fixture Body 179
7.5 Advantages and Features 181
7.5.1 Long Operating Life
7.5.2 Environmentally Safe (no Mercury)
7.5.3 Significantly Reduced Heat Radiation
7.5.4 Flicker Free and Instant Turn on
7.5.5 Unaffected by Frequent on/off
7.5.6 Dimmability and Controllability
7.5.7 Durability
7.5.8 Minimal Light Loss

7.6 Comparisons with Traditional Lighting
7.6.1 Comparison with Halogen and Incandescent Lighting
7.6.2 Comparison with CFLs
7.6.3 Comparison with Fluorescent Tubes

7.7 Architectural/General Illumination Applications
7.7.1 Color Changing/Outdoor Wall Washing
7.7.2 Residential/Retail
7.7.3 Office Lighting

7.8 Case Studies
7.8.1 Argo Tea – Chicago and New York City, USA
7.8.2 Shangri-la Hotel, Abu Dhabi, UAE
7.8.3 Sons of the Revolution Museum, NYC, USA
7.8.4 Radisson Hotel, Dubai, UAE

7.9 Future/Novel Designs Possible with LEDs

7.10 Conclusions

8. Minimum Energy Housing in Cuba
Dania González Couret

8.1 Introduction
8.2 Life Cycle and Sustainable Buildings
8.3 Design Strategies in Warm and Humid Climates
8.4 The Urban Microclimate
8.5 Vernacular Architecture in Cuba
8.6 Modern Architecture in Cuba
8.7 Present and Future
8.7.1 Isolated, Rural and Suburban Housing
8.7.2 Multifamily Urban Housing
8.8 Final Remarks

9. Daylighting
Helmut F.O. Müller

9.1 Introduction
9.2 Characteristics and Availability
9.3 Photometric Units
9.4 Colors
9.5 Daylight Availability
9.6 Performance of Daylighting
9.7 Comfort and Health

Khaled A. Al-Sallal

10.1 Introduction 258
10.2 Background 259
 10.2.1 Geography and Climate of Yemen 259
 10.2.2 Architecture 259
 10.2.3 Thermal Performance of the Vernacular House 263
10.3 Theoretical Model for Sustainable Architecture 266
 10.3.1 Form-Space Relationship Model 267
10.4 Analysis 268
 10.4.1 The Urban Garden and the Social Square Setting 268
 10.4.2 Tower House Setting 269
 10.4.3 Building Skin and Multi-component Window Setting 272
 10.4.4 Relationships Between Factors 272
 10.4.5 Influence on Form and Space Design 275
10.5 Conclusion 278

Appendix A Sustainable Design Guidelines Derived From Response of Architectural Form and Space to Climatic and Functional Factors 280

Appendix B A Comparison between a Vertical Form and a Horizontal Form 286
11. Sustainable Buildings in Mediterranean Area

Marco Sala and Alessandra Carta

11.1 Abitare Mediterraneo Project

11.2 EULEB

11.2.1 Location
11.2.2 Building Classification

11.3 Technological and Business Incubator – Lucca, Italy

11.3.1 Identification
11.3.2 General Data
11.3.3 Outdoor and Indoor Climate
11.3.4 Insulation
11.3.5 Solar Control
11.3.6 Cooling
11.3.7 Ventilation
11.3.8 Energy Performance
11.3.9 Monitored Comfort
11.3.10 User Acceptance
11.3.11 Financial Data

11.4 Bardini Museum – Florence, Italy

11.4.1 General Data
11.4.2 Identification
11.4.3 Outdoor and Indoor Climate
11.4.4 Solar Control
11.4.5 Lighting
11.4.6 Cooling
11.4.7 Ventilation
11.4.8 Energy Performance
11.4.9 Monitored Comfort
11.4.10 User Acceptance
11.4.11 Financial Data

11.5 New Meyer Hospital – Florence, Italy

11.5.1 General Data
11.5.2 Identification
11.5.3 Outdoor and Indoor Climate
11.5.4 Green Roof
11.5.5 Solar Control
11.5.6 Heating
11.5.7 Cooling
11.5.8 Ventilation
11.5.9 Renewable Energy
11.5.10 Co-Generation
11.5.11 Energy Performance
11.5.12 Monitored Comfort
11.5.13 User Acceptance
11.5.14 Financial Data

11.6 Primary School – Empoli, Italy

11.6.1 General Data
11.6.2 Identification
12. A Low-Energy Building Project in Sweden – the Lindås Pilot Project

Fredrik Karlsson and Bahram Moshfegh

12.1 Introduction

12.2 The Building’s Energy Systems and Buildings in Energy Systems

12.3 Energy Use in Swedish Building Sector

12.4 Energy Use in Residential Buildings

12.5 New Technologies that Make Buildings more Energy-Efficient and Environmentally Sound

12.7 Building and the Health of Occupants

12.8 Some Examples of Low-Energy Buildings in Sweden

12.10 The Swedish Lindås Pilot Project – Houses without Heating Systems

12.10.1 Description of the Lindås Buildings

12.10.2 Energy Usage – Measurements and Building Energy Simulations

12.10.3 Indoor Environmental

12.10.4 Environmental Performance and Embodied Energy
13. Key Characteristics of Top Performing Sustainable Buildings from the Perspective of the Users

George Baird

13.1 Introduction 360
13.2 The Buildings and their Users 360
13.3 Survey Methodology and Analytical Procedures 360
13.4 Design Features of Buildings with High Summary Indices 363
 13.4.1 NRG Systems Facility, Vermont, USA – Figures 13.1 and 13.2 363
 13.4.2 Torrent Research Centre, Ahmedabad, India – Figures 13.3 and 13.4 365
 13.4.3 Natural Resources Defense Council, California, USA – Figures 13.5 and 13.6 367
 13.4.4 Military Families Resource Centre, Toronto, Canada – Figures 13.7 and 13.8 370
 13.4.5 The Erskine Building, Canterbury University, New Zealand – Figures 13.9 and 13.10 371
 13.4.6 St Mary’s Credit Union, Navan, Ireland – Figures 13.11 and 13.12 373
 13.4.7 40 Albert Road, South Melbourne, Victoria, Australia – Figures 13.13 and 13.14 375
 13.4.8 Ministry of Energy, Water and Communications, Putrajaya, Malaysia – Figures 13.15 and 13.16 377
 13.4.9 60 Leicester Street, Melbourne, Australia – Figures 13.17 and 13.18 378
 13.4.10 AUT Akoranga, Auckland, New Zealand – Figures 13.19 and 13.20 380

13.5 Key Characteristics and Common Features of these Sustainable Buildings 382
Acknowledgments 382
Appendix Calculation of Indices 384

Rahman Azari and Maryam Singery

14.1 Background and Present Situation 387
14.2 Traditional Architecture; The Outcome of a Complex Thinking System 389
14.3 Traditional Architecture and Adaptive Response to Climate 390
 14.3.1 Courtyards 391
 14.3.2 Apertures 392
 14.3.3 Material and Thermal Mass 393
14.4 Wind Catcher/Tower 394
14.5 Spatial Organization: A Means to Adapt to Culture and Climate 395
14.6 Conclusion 398
Acknowledgments 399
15. Architectural Buildings in Romania

Ruxandra Crutescu

15.1 One Family House in Burlusi Ciofringeni, Arges County, Romania 401
15.2 Amvic Passive Office Building – Bragadiru, Ilfov County, Romania 403
 15.2.1 Planning Concept 403
 15.2.2 Building Construction 404
 15.2.3 Building Envelope 406
 15.2.4 The Heating System and Controlled Ventilation System 407
 15.2.5 Vacuum Solar Collectors 411
 15.2.6 Analysis and Monitoring Data 412
15.3 Residential Living Units in Cluj Napoca, Cluj County, Romania 415
15.4 Two Passive Houses in Caransebes, Caras-Severin County, Romania 416
15.5 Church in Bistra, Neamt County, Romania – Low-Energy Building 417
15.6 Conclusions 418

16. Sustainable Architecture in Africa

Manuel Correia Guedes

16.1 Introduction 421
16.2 Bioclimatic Project: General Guidelines 425
16.3 Climatic Context 427
16.4 Building Location, Form and Orientation 432
16.5 Shading 441
16.6 Envelope Coatings 444
16.7 Insulation 447
16.8 Window Size and Glazing Type 447
16.9 Natural Ventilation 450
16.10 Thermal Mass 462
16.11 Evaporative Cooling 467
16.12 Control of Internal Gains 467
16.13 The Use of Environmental Controls 470
16.14 Passive Design and Thermal Comfort Criteria 472

17. Mud to Skyscraper – Building Revolution in 50 Years in the Middle East

Ali Sayigh

17.1 Portable Housing: The Bedouin Tent 505
17.2 Mud Houses and Comfort 506
17.3 A New Generation of Buildings 508
17.4 What is the Solution? 509
17.5 Energy and Buildings 510
17.6 Final Remarks 511

Index 513