Manufacturing
Engineering
and Technology

SEVENTH
EDITION
IN SI UNITS

Serope Kalpakjian
Illinois Institute of Technology

Steven R. Schmid
The University of Notre Dame

SI Edition Contributions by

K. S. Vijay Sekar
SSN College of Engineering, Chennai, India
Contents

Preface xxiii

About the Authors xxvii

General Introduction 1

I.1 What is Manufacturing? 1
I.2 Product Design and Concurrent Engineering 6
I.3 Design for Manufacture, Assembly, Disassembly, and Service 10
I.4 Green Design and Manufacturing 11
I.5 Selection of Materials 13
I.6 Selection of Manufacturing Processes 16
I.7 Computer-integrated Manufacturing 25
I.8 Quality Assurance and Total Quality Management 28
I.9 Lean Production and Agile Manufacturing 30
I.10 Manufacturing Costs and Global Competition 31
I.11 Trends in Manufacturing 32

1 The Structure of Metals 38

1.1 Introduction 38
1.2 Types of Atomic Bonds 39
1.3 The Crystal Structure of Metals 40
1.4 Deformation and Strength of Single Crystals 42
1.5 Grains and Grain Boundaries 45
1.6 Plastic Deformation of Polycrystalline Metals 48
1.7 Recovery, Recrystallization, and Grain Growth 49
1.8 Cold, Warm, and Hot Working 50
Summary 51 Key Terms 51 Bibliography 52
Review Questions 52 Qualitative Problems 52
Quantitative Problems 53 Synthesis, Design, and Projects 54

2 Mechanical Behavior, Testing, and Manufacturing Properties of Materials 55

2.1 Introduction 55
2.2 Tension 56
5 Ferrous Metals and Alloys: Production, General Properties, and Applications 128

5.1 Introduction 128
5.2 Production of Iron and Steel 129
5.3 Casting of Ingots 132
5.4 Continuous Casting 133
5.5 Carbon and Alloy Steels 135
5.6 Stainless Steels 142
5.7 Tool and Die Steels 144

Summary 145 Key Terms 146 Bibliography 147
Review Questions 147 Qualitative Problems 147

6 Nonferrous Metals and Alloys: Production, General Properties, and Applications 150

6.1 Introduction 150
6.2 Aluminum and Aluminum Alloys 151
6.3 Magnesium and Magnesium Alloys 155
6.4 Copper and Copper Alloys 156
6.5 Nickel and Nickel Alloys 158
6.6 Superalloys 159
6.7 Titanium and Titanium Alloys 160
6.8 Refractory Metals and Alloys 161
6.9 Beryllium 162
6.10 Zirconium 162
6.11 Low-melting Alloys 162
6.12 Precious Metals 164
6.13 Shape-memory Alloys (Smart Materials) 164
6.14 Amorphous Alloys (Metallic Glasses) 165
6.15 Metal Foams 165

Summary 166 Key Terms 166 Bibliography 166
Review Questions 167 Qualitative Problems 167
Quantitative Problems 168 Synthesis, Design, and Projects 168

7 Polymers: Structure, General Properties, and Applications 169

7.1 Introduction 169
7.2 The Structure of Polymers 171
7.3 Thermoplastics 178
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Thermosetting Plastics</td>
<td>181</td>
</tr>
<tr>
<td>7</td>
<td>Additives in Plastics</td>
<td>182</td>
</tr>
<tr>
<td>7</td>
<td>General Properties and Applications of Thermoplastics</td>
<td>183</td>
</tr>
<tr>
<td>7</td>
<td>General Properties and Applications of Thermosetting Plastics</td>
<td>186</td>
</tr>
<tr>
<td>7</td>
<td>Biodegradable Plastics</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>Elastomers (Rubbers)</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>Key Terms</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Qualitative Problems</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Quantitative Problems</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>Synthesis, Design, and Projects</td>
<td>193</td>
</tr>
</tbody>
</table>

8

Ceramics, Glass, Graphite, Diamond, and Nanomaterials: Structure, General Properties, and Applications | 194

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>194</td>
</tr>
<tr>
<td>8.2</td>
<td>The Structure of Ceramics</td>
<td>195</td>
</tr>
<tr>
<td>8.3</td>
<td>General Properties and Applications of Ceramics</td>
<td>200</td>
</tr>
<tr>
<td>8.4</td>
<td>Glasses</td>
<td>204</td>
</tr>
<tr>
<td>8.5</td>
<td>Glass Ceramics</td>
<td>206</td>
</tr>
<tr>
<td>8.6</td>
<td>Graphite</td>
<td>207</td>
</tr>
<tr>
<td>8.7</td>
<td>Diamond</td>
<td>209</td>
</tr>
<tr>
<td>8.8</td>
<td>Nanomaterials</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>211</td>
</tr>
<tr>
<td></td>
<td>Key Terms</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Qualitative Problems</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Quantitative Problems</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>Synthesis, Design, and Projects</td>
<td>213</td>
</tr>
</tbody>
</table>

9

Composite Materials: Structure, General Properties, and Applications | 215

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>215</td>
</tr>
<tr>
<td>9.2</td>
<td>The Structure of Reinforced Plastics</td>
<td>216</td>
</tr>
<tr>
<td>9.3</td>
<td>Properties of Reinforced Plastics</td>
<td>221</td>
</tr>
<tr>
<td>9.4</td>
<td>Applications of Reinforced Plastics</td>
<td>224</td>
</tr>
<tr>
<td>9.5</td>
<td>Metal-matrix Composites</td>
<td>226</td>
</tr>
<tr>
<td>9.6</td>
<td>Ceramic-matrix Composites</td>
<td>228</td>
</tr>
<tr>
<td>9.7</td>
<td>Other Composites</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Key Terms</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Review Questions</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Qualitative Problems</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>Quantitative Problems</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>Synthesis, Design, and Projects</td>
<td>232</td>
</tr>
</tbody>
</table>
Part III: Forming and Shaping Processes and Equipment 313

13 Metal-rolling Processes and Equipment 316
 13.1 Introduction 316
 13.2 The Flat-rolling Process 318
 13.3 Flat-rolling Practice 323
 13.4 Rolling Mills 326
 13.5 Various Rolling Processes and Mills 328

Summary 333 Key Terms 333 Bibliography 334
Review Questions 334 Qualitative Problems 334
Quantitative Problems 335 Synthesis, Design, and Projects 336

14 Metal-forging Processes and Equipment 337
 14.1 Introduction 337
 14.2 Open-die Forging 339
 14.3 Impression-die and Closed-die Forging 342
 14.4 Various Forging Operations 345
 14.5 Forgeability of Metals; Forging Defects 349
 14.6 Die Design, Die Materials, and Lubrication 351
 14.7 Die-manufacturing Methods and Die Failure 354
 14.8 Forging Machines 355
 14.9 Economics of Forging 358

Summary 360 Key Terms 361 Bibliography 361
Review Questions 362 Qualitative Problems 362
Quantitative Problems 362 Synthesis, Design, and Projects 363

15 Metal Extrusion and Drawing Processes and Equipment 364
 15.1 Introduction 364
 15.2 The Extrusion Process 366
 15.3 Hot Extrusion 368
 15.4 Cold Extrusion 372
 15.5 Extrusion Defects 374
 15.6 Design Considerations 376
 15.7 Extrusion Equipment 376
 15.8 The Drawing Process 377
 15.9 Drawing Practice 379
 15.10 Drawing Defects and Residual Stresses 382
 15.11 Drawing Equipment 382

Summary 383 Key Terms 384 Bibliography 384
Review Questions 384 Qualitative Problems 384
Quantitative Problems 385 Synthesis, Design, and Projects 385
16 Sheet-metal Forming Processes and Equipment 386

16.1 Introduction 386
16.2 Shearing 387
16.3 Sheet-metal Characteristics and Formability 397
16.4 Formability Tests for Sheet Metals 399
16.5 Bending Sheets, Plates, and Tubes 402
16.6 Miscellaneous Bending and Related Forming Operations 406
16.7 Deep Drawing 411
16.8 Rubber Forming and Hydroforming 419
16.9 Spinning 423
16.10 Superplastic Forming 426
16.11 Hot Stamping 427
16.12 Specialized Forming Processes 428
16.13 Manufacturing of Metal Honeycomb Structures 433
16.14 Design Considerations in Sheet-metal Forming 434
16.15 Equipment for Sheet-metal Forming 437
16.16 Economics of Sheet-forming Operations 438

Summary 439 **Key Terms** 440 **Bibliography** 440

Review Questions 440 **Qualitative Problems** 441
Quantitative Problems 441 **Synthesis, Design, and Projects** 442

17 Powder Metal Processes and Equipment 444

17.1 Introduction 444
17.2 Production of Metal Powders 445
17.3 Compaction of Metal Powders 450
17.4 Sintering 461
17.5 Secondary and Finishing Operations 464
17.6 Design Considerations 466
17.7 Economics of Powder Metallurgy 469

Summary 471 **Key Terms** 471 **Bibliography** 471

Review Questions 472 **Qualitative Problems** 472
Quantitative Problems 473 **Synthesis, Design, and Projects** 473

18 Ceramics, Glasses, and Superconductors: Processing and Equipment 475

18.1 Introduction 475
18.2 Shaping Ceramics 476
18.3 Forming and Shaping of Glass 483
18.4 Techniques for Strengthening and Annealing Glass 486
18.5 Design Considerations for Ceramics and Glasses 489
18.6 Processing of Superconductors 489
19 Plastics and Composite Materials: Forming and Shaping 494

19.1 Introduction 494
19.2 Extrusion 495
19.3 Injection Molding 502
19.4 Blow Molding 509
19.5 Rotational Molding 509
19.6 Thermoforming 511
19.7 Compression Molding 512
19.8 Transfer Molding 513
19.9 Casting 514
19.10 Foam Molding 515
19.11 Cold Forming and Solid-phase Forming 516
19.12 Processing Elastomers 517
19.13 Processing Polymer-matrix Composites 518
19.14 Processing Metal-matrix and Ceramic-matrix Composites 527
19.15 Design Considerations 528
19.16 Economics of Processing Plastics and Composite Materials 530

20 Rapid-prototyping Processes and Operations 535

20.1 Introduction 535
20.2 Subtractive Processes 538
20.3 Additive Processes 540
20.4 Virtual Prototyping 551
20.5 Self-replicating Machines 552
20.6 Direct Manufacturing and Rapid Tooling 553

Summary 531 Key Terms 531 Bibliography 532
Review Questions 532 Qualitative Problems 532
Quantitative Problems 533 Synthesis, Design, and Projects 533

Summary 560 Key Terms 560 Bibliography 560
Review Questions 561 Qualitative Problems 561
Quantitative Problems 562 Synthesis, Design, and Projects 562
Part IV: Machining Processes and Machine Tools 563

21 Fundamentals of Machining 566

21.1 Introduction 566
21.2 Mechanics of Cutting 567
21.3 Cutting Forces and Power 577
21.4 Temperatures in Cutting 580
21.5 Tool Life: Wear and Failure 582
21.6 Surface Finish and Integrity 589
21.7 Machinability 591

Summary 595 Key Terms 596 Bibliography 596
Review Questions 596 Qualitative Problems 597
Quantitative Problems 598 Synthesis, Design, and Projects 599

22 Cutting-tool Materials and Cutting Fluids 600

22.1 Introduction 600
22.2 High-speed Steels 604
22.3 Cast-cobalt Alloys 605
22.4 Carbides 605
22.5 Coated Tools 609
22.6 Alumina-based Ceramics 612
22.7 Cubic Boron Nitride 613
22.8 Silicon-nitride-based Ceramics 614
22.9 Diamond 614
22.10 Whisker-reinforced Materials and Nanomaterials 615
22.11 Tool Costs and Reconditioning of Tools 616
22.12 Cutting Fluids 616

Summary 622 Key Terms 622 Bibliography 622
Review Questions 623 Qualitative Problems 623
Quantitative Problems 624 Synthesis, Design, and Projects 624

23 Machining Processes: Turning and Hole Making 625

23.1 Introduction 625
23.2 The Turning Process 628
23.3 Lathes and Lathe Operations 636
23.4 Boring and Boring Machines 651
23.5 Drilling, Drills, and Drilling Machines 652
24 Machining Processes: Milling, Broaching, Sawing, Filing, and Gear Manufacturing 668

25 Machining Centers, Machine-tool Structures, and Machining Economics 703

26 Abrasive Machining and Finishing Operations 729
29 Fabrication of Microelectromechanical Devices and Systems; Nanoscale Manufacturing 841

29.1 Introduction 841
29.2 Micromachining of MEMS Devices 843
29.3 Electroforming-based Processes 854
29.4 Solid Free-form Fabrication of Devices 861
29.5 Nanoscale Manufacturing 866
Summary 869 Key Terms 869 Bibliography 869
Review Questions 870 Qualitative Problems 870
Quantitative Problems 870 Synthesis, Design, and Projects 871

Part VI: Joining Processes and Equipment 873

30 Fusion-welding Processes 877

30.1 Introduction 877
30.2 Oxyfuel-gas Welding 877
30.3 Arc-welding Processes: Nonconsumable Electrode 882
30.4 Arc-welding Processes: Consumable Electrode 885
30.5 Electrodes for Arc Welding 890
30.6 Electron-beam Welding 892
30.7 Laser-beam Welding 893
30.8 Cutting 894
30.9 The Weld Joint, Weld Quality, and Testing 896
30.10 Joint Design and Process Selection 905
Summary 908 Key Terms 909 Bibliography 909
Review Questions 909 Qualitative Problems 910
Quantitative Problems 910 Synthesis, Design, and Projects 911

31 Solid-State Welding Processes 912

31.1 Introduction 912
31.2 Cold Welding and Roll Bonding 913
31.3 Ultrasonic Welding 914
31.4 Friction Welding 915
31.5 Resistance Welding 917
31.6 Explosion Welding 925
31.7 Diffusion Bonding 926
31.8 Economics of Welding Operations 928
Summary 930 Key Terms 930 Bibliography 931
Review Questions 931 Qualitative Problems 931
Quantitative Problems 932 Synthesis, Design, and Projects 932
32 Brazing, Soldering, Adhesive-bonding, and Mechanical Fastening Processes 934

32.1 Introduction 934
32.2 Brazing 935
32.3 Soldering 939
32.4 Adhesive-bonding 943
32.5 Mechanical Fastening 949
32.6 Joining Plastics, Ceramics, and Glasses 953
32.7 Economics of Joining Operations 957

Summary 958 Key Terms 958 Bibliography 959
Review Questions 959 Qualitative Problems 959
Quantitative Problems 960 Synthesis, Design, and Projects 960

Part VII: Surface Technology 961

33 Surface Roughness and Measurement; Friction, Wear, and Lubrication 963

33.1 Introduction 963
33.2 Surface Structure and Integrity 964
33.3 Surface Texture and Roughness 966
33.4 Friction 969
33.5 Wear 973
33.6 Lubrication 976
33.7 Metalworking Fluids and Their Selection 978

Summary 981 Key Terms 982 Bibliography 982
Review Questions 983 Qualitative Problems 983
Quantitative Problems 984 Synthesis, Design, and Projects 984

34 Surface Treatments, Coatings, and Cleaning 985

34.1 Introduction 985
34.2 Mechanical Surface Treatments 986
34.3 Mechanical Plating and Cladding 987
34.4 Case Hardening and Hard Facing 988
34.5 Thermal Spraying 988
34.6 Vapor Deposition 989
34.7 Ion Implantation and Diffusion Coating 993
34.8 Laser Treatments 993
34.9 Electroplating, Electroless Plating, and Electroforming 994
34.10 Conversion Coatings 998
34.11 Hot Dipping 998
34.12 Porcelain Enameling; Ceramic and Organic Coatings 999
Part VIII: Engineering Metrology, Instrumentation, and Quality Assurance 1007

35 Engineering Metrology and Instrumentation 1008

36 Quality Assurance, Testing, and Inspection 1030
Part IX: Manufacturing in a Competitive Environment 1057

37 Automation of Manufacturing Processes and Operations 1059

38 Computer-aided Manufacturing 1101

39 Computer-integrated Manufacturing Systems 1124
40 Product Design and Manufacturing in a Competitive Environment 1141

40.1 Introduction 1141
40.2 Product Design 1142
40.3 Product Quality 1145
40.4 Life-cycle Assessment and Sustainable Manufacturing 1145
40.5 Energy Consumption in Manufacturing 1147
40.6 Material Selection for Products 1149
40.7 Material Substitution 1151
40.8 Manufacturing Process Capabilities 1153
40.9 Process Selection 1155
40.10 Manufacturing Costs and Cost Reduction 1158

Summary 1162 Key Terms 1162 Bibliography 1162
Review Questions 1163 Qualitative Problems 1163
Synthesis, Design, and Projects 1164

Index 1167