Bin Zhou

Truncated Predictor Feedback for Time-Delay Systems

Springer
Contents

1 **Introduction** ... 1
 1.1 Time-Delay Systems ... 1
 1.1.1 Stability Analysis of Time-Delay Systems 2
 1.1.2 Stabilization of Time-Delay Systems 3
 1.2 Time-Delay Systems with Input Saturation 5
 1.2.1 Control Systems with Input Saturation 5
 1.2.2 Systems with Both Input Delays and Saturations 6
 1.3 Objectives of This Book 7

2 **Stabilization of Linear Systems with a Single Input Delay** 9
 2.1 Problem Formulation .. 10
 2.2 Stabilization by the Delay-Dependent TPF 11
 2.2.1 Derivation of the Delay-Dependent TPF 11
 2.2.2 Assumptions on \((A(t), B(t))\) 15
 2.2.3 Stability Analysis of the Closed-Loop System ... 17
 2.2.4 Semi-global Stabilization by TPF 23
 2.2.5 Parameter Optimization in the TPF 25
 2.3 Stabilization by Delay-Independent TPF 29
 2.3.1 Design of Delay-Independent TPF 29
 2.3.2 Stability of the Closed-Loop System 30
 2.3.3 Semi-global Stabilization 32
 2.4 Numerical Examples 34
 2.4.1 Delay-Dependent TPF 34
 2.4.2 Delay-Independent TPF 39
 2.5 Concluding Remarks 40

3 **Stabilization of Linear Systems with Multiple and Distributed Input Delays** 45
 3.1 Systems with Multiple Input Delays 46
 3.1.1 Problem Formulation 46
 3.1.2 Derivation of the TPF 47
 3.1.3 Stability of the Closed-Loop System Under the TPF . 51
 3.1.4 Different TPF Designed for a Single Input Delay . 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Systems with Distributed Input Delays</td>
<td>59</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Problem Formulation</td>
<td>59</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Stabilization by the TPF</td>
<td>60</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Computation of the Parameter γ</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Discussions on the Assumption on A</td>
<td>65</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Systems with Multiple Input Delays</td>
<td>65</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Systems with Distributed Input Delays</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>Numerical Examples</td>
<td>72</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Systems with Multiple Time-Varying Input Delays</td>
<td>72</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Systems with Multiple Constant Input Delays</td>
<td>75</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Systems with Distributed Input Delays</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Concluding Remarks</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Stabilization of Linear Systems with Both State and Input Delays</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>A Chain of Integrators with Both State and Input Delays</td>
<td>81</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Problem Formulation</td>
<td>81</td>
</tr>
<tr>
<td>4.1.2</td>
<td>The Design of the TPF</td>
<td>83</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Stability Analysis of the Closed-Loop System</td>
<td>85</td>
</tr>
<tr>
<td>4.2</td>
<td>A General Class of Time-Delay Systems</td>
<td>89</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Problem Formulation</td>
<td>89</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Design of the TPF</td>
<td>90</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Stability of the Closed-Loop System</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>A Class of Distributed Time-Delay Systems</td>
<td>96</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Problem Formulation</td>
<td>96</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Stabilization by the TPF</td>
<td>97</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Some Special Cases</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Numerical Examples</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Concluding Remarks</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>Stabilization of Linear Systems with Input and Output Delays</td>
<td>107</td>
</tr>
<tr>
<td>5.1</td>
<td>Problem Formulation and Preliminaries</td>
<td>108</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Problem Formulation</td>
<td>108</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Predictor-Based Observer Design</td>
<td>109</td>
</tr>
<tr>
<td>5.2</td>
<td>Infinite-Dimensional Observer-Based Output Feedback</td>
<td>112</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Multiple Output Delays</td>
<td>112</td>
</tr>
<tr>
<td>5.2.2</td>
<td>A Single and No Output Delay</td>
<td>114</td>
</tr>
<tr>
<td>5.3</td>
<td>Finite-Dimensional Observer-Based Output Feedback</td>
<td>118</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Observer-Based Output Feedback Design by the TPF</td>
<td>118</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Stability Analysis: The Full-Order Case</td>
<td>119</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Stability Analysis: The Reduced-Order Case</td>
<td>123</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Semi-global Stabilization</td>
<td>131</td>
</tr>
<tr>
<td>5.4</td>
<td>Determination of the Design Parameter γ</td>
<td>134</td>
</tr>
<tr>
<td>5.5</td>
<td>Numerical Examples</td>
<td>136</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>144</td>
</tr>
</tbody>
</table>
6 Global Stabilization of Planar Systems with Input Delay and Saturation .. 147
6.1 The Double Integrator System: Delay-Dependent TPF 147
 6.1.1 The Main Theorem .. 148
 6.1.2 Proof of Theorem 6.1 ... 149
6.2 The Double Integrator System: Delay-Independent TPF 159
 6.2.1 The Main Theorem .. 159
 6.2.2 Proof of Theorem 6.2 ... 160
6.3 The Single Oscillator System ... 168
 6.3.1 The Main Theorem .. 168
 6.3.2 Proof of Theorem 6.3 ... 170
6.4 A Numerical Example .. 175
6.5 Conclusions ... 177

7 Stabilization of Linear Time-Delay Systems by Higher-Order TPF 179
7.1 Problem Formulation and Preliminaries ... 180
7.2 The Higher-Order TPF .. 180
7.3 Stability Analysis of the Closed-Loop System .. 183
 7.3.1 Global Stabilization .. 183
 7.3.2 Semi-global Stabilization ... 186
 7.3.3 Exact Bound of the Parameter γ ... 188
7.4 Implementation via Approximation ... 192
7.5 First-Order TPF Versus Higher-Order TPF ... 195
7.6 Concluding Remarks .. 198

8 Stabilization of Discrete-Time Systems with Input Delays 199
8.1 Problem Formulation .. 200
8.2 A Single Delay: Stabilization by Delay-Dependent TPF 201
 8.2.1 Design of the Delay-Dependent TPF .. 201
 8.2.2 Stability Analysis of the Closed-Loop System 204
 8.2.3 Semi-global Stabilization ... 209
8.3 A Single Delay: Stabilization by Delay-Independent TPF 211
 8.3.1 Design of the Delay-Independent TPF .. 211
 8.3.2 Stability of the Closed-Loop System .. 213
8.4 Systems with Multiple Input Delays .. 218
 8.4.1 Design of the TPF .. 218
 8.4.2 Stability of the Closed-Loop System .. 221
 8.4.3 Semi-global Stabilization by the TPF .. 226
8.5 Determination of the Parameter γ ... 228
8.6 Numerical Examples .. 229
 8.6.1 System with a Single Input Delay .. 229
 8.6.2 Systems with Multiple Input Delays .. 232
8.7 Conclusions ... 234
9 Stabilization of Discrete-Time Systems with Input and Output Delays .. 237
 9.1 Problem Formulation and Preliminaries 237
 9.1.1 Problem Formulation ... 237
 9.1.2 Observer Design by the Predictor Feedback 239
 9.2 Memory Observer-Based Output Feedback 242
 9.2.1 Multiple Output Delays .. 243
 9.2.2 A Single Output Delay ... 244
 9.2.3 Determination of the Design Parameters 247
 9.3 Memoryless Observer-Based Output Feedback 248
 9.3.1 Observer Design by the TPF 248
 9.3.2 Stability Analysis: The Full-Order Case 249
 9.3.3 Stability Analysis: The Reduced-Order Case 253
 9.3.4 Semi-global Stabilization 261
 9.4 A Numerical Example .. 265
 9.5 Conclusions .. 272

10 Consensus of Multi-agent Systems with Large Input and Communication Delays .. 273
 10.1 Problem Formulation and Preliminaries 274
 10.1.1 Introduction on Graphs and Some Special Notations 274
 10.1.2 Problem Formulation ... 276
 10.1.3 Some Assumptions .. 278
 10.1.4 A Reduction of the Consensus Problem 279
 10.1.5 Stability of Coupled Time-Delay Systems 281
 10.2 Predictor Feedback Protocols and TPF Protocols 282
 10.2.1 State Feedback Consensus 282
 10.2.2 Full-Order Observer-Based Output Feedback Consensus 288
 10.2.3 Reduced-Order Observer-Based Output Feedback Consensus 292
 10.3 Extensions to the Leader-Following Consensus 297
 10.4 Some Corollaries in the Delay-Free Case 299
 10.5 Two Numerical Examples .. 301
 10.5.1 Constant Input Delay .. 302
 10.5.2 Time-Varying Input Delay 306
 10.6 Proofs of Lemmas 10.2 and 10.3 308
 10.6.1 Proof of Lemma 10.2: The Continuous-Time Case 310
 10.6.2 Proof of Lemma 10.3: The Continuous-Time Case 313
 10.6.3 Proof of Lemma 10.2: The Discrete-Time Case 317
 10.6.4 Proof of Lemma 10.3: The Discrete-Time Case 322
 10.7 Concluding Remarks .. 325

11 Applications of the Truncated Predictor Feedback to the Spacecraft Rendezvous and Formation Flying 327
 11.1 The Relative Motion and Its Properties 328
 11.1.1 T-H Equations and C-W Equations 328