Contents

1 **Historical perspective**

2 **Electronic states, phonons, and electron-phonon interaction**
 2.1 Adiabatic approximation: Hamiltonian
 2.2 Adiabatic approximation and non-adiabaticity:
 Born–Oppenheimer and "crude" approaches
 2.3 Electron–phonon coupling
 2.4 Electron–phonon interaction and renormalization
 of normal parameters
 2.5 The "Migdal" theorem
 2.6 Polaronic states
 2.6.1 Concept
 2.6.2 Dynamic polaron

3 **Phonon mechanism**
 3.1 Superconductivity as a "giant" non-adiabatic phenomenon
 3.2 The BCS model
 3.3 Phonon mechanism: main equations
 3.4 Critical temperature
 3.4.1 Weak coupling
 3.4.2 Intermediate coupling ($\lambda \lesssim 1.5$)
 3.4.3 Coulomb interaction
 3.4.4 Very strong coupling
 3.4.5 The general case
 3.4.6 About an upper limit of T_c
 3.5 Properties of superconductors with strong coupling
 3.6 The Van Hove scenario
 3.7 Bipolarons: BEC versus BCS
 3.8 Superconducting semiconductors
 3.9 Polaronic effect and its impact on T_c
 3.9.1 Double-well structure
 3.9.2 Superconducting state

4 **Electronic mechanisms**
 4.1 The Little model
 4.2 "Sandwich" excitonic mechanism
 4.3 Three-dimensional systems: electronic mechanism
 4.4 Plasmons
 4.4.1 Plasmons in layered systems: dispersion law
 and "electronic sound"

5 Magnetic mechanism
5.1 Introduction
5.1.1 Localized versus itinerant aspects of the cuprates 60
5.2 Fermi liquid-based theories 62
5.2.1 The spin-bag model of Schrieffer, Wen, and Zhang (1989) 62
5.2.2 The t-J model (Emery, 1987; Zhang and Rice, 1988) 66
5.2.3 Two-dimensional Hubbard model studies by Monte Carlo techniques 70
5.2.4 Spiral phase of a doped quantum antiferromagnet (Shraiman and Siggia, 1988–89) 77
5.2.5 Slave bosons 82
5.3 Non-Fermi-liquid models 85
5.3.1 The resonant valence bond (RVB) model and its evolution 85
5.3.2 Anyon models and fractional statistics 86
5.4 Conclusions 87

6 Experimental methods: Spectroscopic
6.1 Tunneling spectroscopy 88
6.1.1 Experimental method 88
6.1.2 Energy gap and transition temperature 90
6.1.3 Inversion of the gap equation and $\alpha^2 F(\Omega)$ 91
6.1.4 Electron-phonon coupling parameter λ 94
6.2 Scanning tunneling microscopy and spectroscopy 96
6.3 Infrared spectroscopy 97
6.4 Ultrasonic attenuation 99
6.5 Angle-resolved photoemission 100
6.6 Muon spin resonance (μSR) 100
6.6.1 μSR studies of superconductivity 102

7 Multigap superconductivity
7.1 Multigap superconductivity: general picture 103
7.2 Critical temperature 104
7.3 Energy spectrum 105
7.4 Properties of two-gap superconductors 108
7.4.1 Penetration depth; surface resistance 108
7.4.2 Strong magnetic field: Ginzburg–Landau equations for a multigap superconductor 110
7.4.3 Heat capacity 111
7.4.4 Experimental data 111
7.5 Induced two-band superconductivity 112
7.6 Symmetry of the order parameter and multiband superconductor 113
8 Induced superconductivity: proximity effect
8.1 Proximity “sandwich” 114
8.2 Critical temperature 115
8.3 Proximity effect versus the two-gap model 119
8.4 Pair-breaking: gapless superconductivity 119

9 Isotope effect
9.1 General remarks 122
9.2 Coulomb pseudopotential 122
9.3 Multi-component lattice 123
9.4 Anharmonicity 123
9.5 Isotope effect in proximity systems 124
9.6 Magnetic impurities and isotope effect 125
9.7 Polaronic effect and isotope substitution 126
9.8 Penetration depth: isotopic dependence 128

10 Cuprate superconductors
10.1 History 131
10.2 Structure of the cuprates 132
10.3 Preparation of bulk and film cuprates 133
10.4 Properties of the cuprates 134
10.4.1 Phase diagram 134
10.4.2 Critical field H_{c2} 135
10.4.3 Two-gap spectrum 136
10.4.4 Symmetry of the order parameter 136
10.5 Isotope effect 138
10.5.1 Polaronic state 138
10.5.2 Isotopic dependence of the penetration depth 140
10.6 Mechanism of high T_c 140
10.7 Proposed experiment 145

11 Inhomogeneous superconductivity and the “pseudogap” state of novel superconductors
11.1 “Pseudogap” state: main properties 148
11.1.1 Anomalous diamagnetism above T_c 148
11.1.2 Energy gap 150
11.1.3 Isotope effect 152
11.1.4 “Giant” Josephson effect 152
11.1.5 Transport properties 153
11.2 Inhomogeneous state 154
11.2.1 Qualitative picture 154
11.2.2 The origin of inhomogeneity 155
11.2.3 Percolative transition 156
11.2.4 Inhomogeneity: experimental data 156
11.3 Energy scales 157
11.3.1 Highest-energy scale (T^*) 158
11.3.2 Diamagnetic transition (T^*_d) 158
11.3.3 Resistive transition (T_c) 159

11.4 Theory 159
11.4.1 General equations 160
11.4.2 Diamagnetism 160
11.4.3 Transport properties; "giant" Josephson effect 162
11.4.4 Isotope effect 166

11.5 Other systems 167
11.5.1 Borocarbides 167
11.5.2 Granular superconductors; Pb+Ag system 167

11.6 Ordering of dopants and potential for room-temperature superconductivity 168

11.7 Remarks 171

12 Manganites 172
12.1 Introduction 172
12.2 Electronic structure and doping 173
12.2.1 Structure 173
12.2.2 Magnetic order 176
12.2.3 Double-exchange mechanism 176
12.2.4 Colossal magnetoresistance (CMR) 177

12.3 Percolation phenomena 178
12.3.1 Low doping: transition to the ferromagnetic state at low temperatures 178
12.3.2 Percolation threshold 179
12.3.3 Increase in temperature and percolative transition 180
12.3.4 Experimental data 181
12.3.5 Large doping 182

12.4 Main interactions: Hamiltonian 183
12.5 Ferromagnetic metallic state 184
12.5.1 Two-band spectrum 184
12.5.2 Heat capacity 186
12.5.3 Isotope substitution 187
12.5.4 Optical properties 189

12.6 Insulating phase 190
12.6.1 Parent compound 190
12.6.2 Low doping: polarons 191
12.7 Metallic A-phase: $S-N-S$ Josephson effect 193
12.7.1 Magnetic structure 193
12.7.2 Josephson contact with the A-phase barrier 193

12.8 Discussion: manganites versus cuprates 195

13 Novel superconducting systems 197
13.1 Fe-based pnictide and chalcogenide superconductors 197
13.2 Magnesium diboride: MgB$_2$ 199
13.3 A-15 structure superconductors 201
13.4 Granular superconductors	202
13.5 Sr₂RuO₄: a very novel superconductor	203
13.6 Ruthenium cuprates	204
13.7 Intercalated nitrides: self-supported superconductivity	205

14 Organic superconductivity

14.1 History | 206 |
14.2 Organic superconductors: structure, properties | 207 |
14.3 Intercalated materials | 210 |
14.4 Fullerides | 212 |
14.5 Small-scale organic superconductivity | 213 |
14.6 Pair correlation in aromatic molecules | 214 |

15 Pairing in nanoclusters: nano-based superconducting tunneling networks

15.1 Clusters: shell structure | 218 |
15.2 Pair correlation | 220 |
15.2.1 Qualitative picture | 220 |
15.2.2 Main equations: critical temperature | 222 |
15.2.3 Energy spectrum; fluctuations | 225 |
15.3 How to observe the phenomenon? | 226 |
15.4 Cluster-based tunneling network: macroscopic superconductivity | 227 |
15.5 Cluster crystals | 228 |

Appendices

- Appendix A: Diabatic representation | 229 |
- Appendix B: Dynamic Jahn–Teller effect | 231 |

References | 233 |

Index | 255 |