COMPUTATIONAL BUSINESS ANALYTICS

SUBRATA DAS
Machine Analytics, Inc.
Belmont, Massachusetts, USA

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an Informa business
A CHAPMAN & HALL BOOK
Contents

Chapter 1 • Analytics Background and Architectures

1.1 ANALYTICS DEFINED 1
1.2 ANALYTICS MODELING 5
1.3 ANALYTICS PROCESSES 8
1.3.1 Information Hierarchy 8
1.3.2 Information Processing Hierarchy 9
1.3.3 Human Information Processing Hierarchy 10
1.4 ANALYTICS AND DATA FUSION 11
1.4.1 JDL Fusion Model 12
1.4.2 OODA Loop 14
1.5 FURTHER READING 15

Chapter 2 • Mathematical and Statistical Preliminaries

2.1 STATISTICS AND PROBABILITY THEORY 17
2.2 LINEAR ALGEBRA FUNDAMENTALS 22
2.3 MATHEMATICAL LOGIC 25
2.4 GRAPHS AND TREES 32
2.5 MEASURES OF PERFORMANCE 36
2.6 ALGORITHMIC COMPLEXITY 37
2.7 FURTHER READING 41

Chapter 3 • Statistics for Descriptive Analytics

3.1 PROBABILITY DISTRIBUTIONS 43
3.2 DISCRETE PROBABILITY DISTRIBUTIONS 46
3.2.1 Binomial and Multinomial Distributions 47
3.2.2 Poisson Distribution and Process 48
Contents

3.3 CONTINUOUS PROBABILITY DISTRIBUTIONS 49
 3.3.1 Gaussian or Normal Distribution 49
 3.3.2 Lognormal 50
 3.3.3 Exponential Distribution 51
 3.3.4 Weibull Distribution 52
 3.3.5 Beta and Dirichlet Distributions 53
 3.3.6 Gamma Distribution 56

3.4 GOODNESS-OF-FIT TEST 57
 3.4.1 Probability Plot 57
 3.4.2 One-Way Chi-Square Goodness-of-Fit Test 59
 3.4.3 Kolmogorov-Smirnov Test 61

3.5 FURTHER READING 64

Chapter 4 Bayesian Probability and Inference 65

4.1 BAYESIAN INFERENCE 65

4.2 PRIOR PROBABILITIES 68
 4.2.1 Conjugate Priors 69
 4.2.2 The Jeffreys Prior 70

4.3 FURTHER READING 73

Chapter 5 Inferential Statistics and Predictive Analytics 75

5.1 CHI-SQUARE TEST OF INDEPENDENCE 76

5.2 REGRESSION ANALYSES 77
 5.2.1 Simple Linear Regression 77
 5.2.2 Multiple Linear Regression 78
 5.2.3 Logistic Regression 79
 5.2.4 Polynomial Regression 81

5.3 BAYESIAN LINEAR REGRESSION 82
 5.3.1 Gaussian Processes 84

5.4 PRINCIPAL COMPONENT AND FACTOR ANALYSES 87

5.5 SURVIVAL ANALYSIS 92

5.6 AUTOREGRESSION MODELS 97

5.7 FURTHER READING 98
CHAPTER 6 • Artificial Intelligence for Symbolic Analytics

6.1 ANALYTICS AND UNCERTAINTIES
 6.1.1 Ignorance to Uncertainties
 6.1.2 Approaches to Handling Uncertainties

6.2 NEO-LOGICIST APPROACH
 6.2.1 Evolution of Rules
 6.2.2 Inferencing in Rule-based Systems
 6.2.3 Advantages and Disadvantages of Rule-Based Systems

6.3 NEO-PROBABILIST

6.4 NEO-CALCULIST APPROACH
 6.4.1 Certainty Factors
 6.4.2 Dempster-Shafer Theory of Belief Function

6.5 NEO-GRANULARIST
 6.5.1 Probabilistic Logic
 6.5.2 Fuzzy Logic
 6.5.3 Fuzzy Logic for Customer Segmentation

6.6 FURTHER READING

CHAPTER 7 • Probabilistic Graphical Modeling

7.1 NAIVE BAYESIAN CLASSIFIER (NBC)

7.2 K-DEPENDENCE NAIVE BAYESIAN CLASSIFIER (KNBC)

7.3 BAYESIAN BELIEF NETWORKS
 7.3.1 Conditional Independence in Belief Networks
 7.3.2 Evidence, Belief, and Likelihood
 7.3.3 Prior Probabilities in Networks without Evidence
 7.3.4 Belief Revision
 7.3.5 Evidence Propagation in Polytrees
 7.3.5.1 Upward Propagation in a Linear Fragment
 7.3.5.2 Downward Propagation in a Linear Fragment
 7.3.5.3 Upward Propagation in a Tree Fragment
9.2.1 Extended Kalman Filter (EKF) 240
9.3 MARKOV MODELS 242
 9.3.1 Hidden Markov Models (HMM) 244
 9.3.2 The Forward Algorithm 248
 9.3.3 The Viterbi Algorithm 252
 9.3.4 Baum-Welch Algorithm for Learning HMM 253
9.4 DYNAMIC BAYESIAN NETWORKS (DBNS) 257
 9.4.1 Inference Algorithms for DBNs 260
9.5 FURTHER READING 265

CHAPTER 10 • Monte Carlo Simulation 267
10.1 MONTE CARLO APPROXIMATION 267
10.2 GIBBS SAMPLING 270
10.3 METROPOLIS-HASTINGS ALGORITHM 272
10.4 PARTICLE FILTER (PF) 273
 10.4.1 Particle Filter for Dynamical Systems 274
 10.4.2 Particle Filter for DBN 277
 10.4.3 Particle Filter Issues 279
10.5 FURTHER READING 280

CHAPTER 11 • Cluster Analysis and Segmentation 281
11.1 HIERARCHICAL CLUSTERING 282
11.2 K-MEANS CLUSTERING 284
11.3 K-NEAREST NEIGHBORS 286
11.4 SUPPORT VECTOR MACHINES 288
 11.4.1 Linearly Separable Data 288
 11.4.2 Preparation of Data and Packages 291
 11.4.3 Non-Separable Data 291
 11.4.4 Non-Linear Classifier 293
 11.4.5 VC Dimension and Maximum Margin Classifier 296
11.5 NEURAL NETWORKS 298
 11.5.1 Model Building and Data Preparation 300
 11.5.2 Gradient Descent for Updating Weights 301
11.6 FURTHER READING 302
CHAPTER 12 • Machine Learning for Analytics Models

12.1 DECISION TREES
12.1.1 Algorithms for Constructing Decision Trees
12.1.2 Overfitting in Decision Trees
12.1.3 Handling Continuous Attributes
12.1.4 Advantages and Disadvantages of Decision Tree Techniques

12.2 LEARNING NAIVE BAYESIAN CLASSIFIERS
12.2.1 Semi-Supervised Learning of NBC via EM

12.3 LEARNING OF KNBC

12.4 LEARNING OF BAYESIAN BELIEF NETWORKS
12.4.1 Cases for Learning Bayesian Networks
12.4.2 Learning Probabilities
12.4.2.1 Brief Survey
12.4.2.2 Learning Probabilities from Fully Observable Variables
12.4.2.3 Learning Probabilities from Partially Observable Variables
12.4.2.4 Online Adjustment of Parameters
12.4.3 Structure Learning
12.4.3.1 Brief Survey
12.4.3.2 Learning Structure from Fully Observable Variables
12.4.3.3 Learning Structure from Partially Observable Variables
12.4.4 Use of Prior Knowledge from Experts

12.5 INDUCTIVE LOGIC PROGRAMMING

12.6 FURTHER READING

CHAPTER 13 • Unstructured Data and Text Analytics

13.1 INFORMATION STRUCTURING AND EXTRACTION

13.2 BRIEF INTRODUCTION TO NLP
13.2.1 Syntactic Analysis
13.2.1.1 Tokenization
13.2.1.2 Morphological Analysis
13.2.1.3	Part-of-Speech (POS) Tagging 350
13.2.1.4	Syntactic Parsing 351
13.2.2	Semantic Analysis 354
13.2.2.1	Named Entity Recognition 354
13.2.2.2	Co-reference Resolution 354
13.2.2.3	Relation Extraction 355
13.3	TEXT CLASSIFICATION AND TOPIC EXTRACTION 355
13.3.1	Naïve Bayesian Classifiers (NBC) 356
13.3.2	k-Dependence Naïve Bayesian Classifier (kNBC) 359
13.3.3	Latent Semantic Analysis 361
13.3.4	Probabilistic Latent Semantic Analysis (PLSA) 368
13.3.5	Latent Dirichlet Allocation (LDA) 369

Chapter 14 • Semantic Web 373

14.1	RESOURCE DESCRIPTION FRAMEWORK (RDF) 373
14.1.1	RDF Schema (RDFS) 377
14.1.2	Ontology Web Language (OWL) 379
14.2	DESCRIPTION LOGICS 381
14.2.1	Description Logic Syntax 382
14.2.2	Description Logic Axioms 384
14.2.3	Description Logic Constructs and Subsystems 384
14.2.4	Description Logic and OWL Constructs in Relational Database 386
14.2.5	Description Logic as First-Order Logic 387

Chapter 15 • Analytics Tools 389

15.1	INTELLIGENT DECISION AIDING SYSTEM (IDAS) 390
15.2	ENVIRONMENT FOR 5TH GENERATION APPLICATIONS (E5) 400
15.2.1	Rule-based Expert System Shell 401
15.2.2	Prolog Interpreter 404
15.2.3	Lisp Interpreter 405
15.3 ANALYSIS OF TEXT (ATEXT) 406
15.4 R AND MATLAB 419
15.5 SAS AND WEKA 421

CHAPTER 16 • Analytics Case Studies 425

16.1 RISK ASSESSMENT MODEL I3 425
16.2 RISK ASSESSMENT IN INDIVIDUAL LENDING USING IDAS 427
16.3 RISK ASSESSMENT IN COMMERCIAL LENDING USING E5 AND IDAS 430
16.4 FRAUD DETECTION 441
16.5 SENTIMENT ANALYSIS USING ATEXT 444
 16.5.1 Text Corpus Classification 444
 16.5.2 Evaluation Results 446
16.6 LIFE STATUS ESTIMATION USING DYNAMIC BAYESIAN NETWORKS 449

APPENDIX A • Usage of Symbols 453

A.1 SYMBOLS USED IN THE BOOK 453

APPENDIX B • Examples and Sample Data 455

B.1 PLAY-TENNIS EXAMPLE 455
B.2 UNITED STATES ELECTORAL COLLEGE DATA 456

APPENDIX C • MATLAB and R Code Examples 457

C.1 MATLAB CODE FOR STOCK PREDICTION USING KALMAN FILTER 457
C.2 R CODE FOR STOCK PREDICTION USING KALMAN FILTER 460

Index 479