BEAMED ENERGY PROPULSION

Seventh International Symposium

Ludwigsburg, Germany 10 – 14 April 2011

EDITORS

Hans-Albert Eckel
Stefan Scharring
DLR – German Aerospace Center, Institute of Technical Physics,
Stuttgart, Germany
Table of Contents

Preface: Beamed Energy Propulsion
Hans-Albert Eckel 1

Program Committee 3

PLENARY

The Thin Disk laser—A versatile laser source for beamed energy propulsion
Jochen Speiser 7

Update on modular laser launch system and heat exchanger thruster
Jordin T. Kare 19

Laboratory facilities and measurement techniques for beamed-energy-propulsion experiments in Brazil
Antonio Carlos de Oliveira, José Brosler Chanes Júnior, Thiago Victor Cordeiro Marcos, David Romanelli Pinto, Renan Guilherme Santos Vilela, Victor Alves Barros Galvão, Arthur Freire Mantovani, Felipe Jean da Costa, José Adeildo dos Santos Assençao, Alberto Monteiro dos Santos, Paulo Gilberto de Paula Toro, Marco Antonio Sala Minucci, Israel da Silveira Rêgo, Israel Irone Salvador, and Leik N. Myrabo 31

Review on Japanese-German-U.S. cooperation on laser-ablation propulsion
Stefan Scharring, John E. Sinko, Stephanie Karg, Hans-Albert Eckel, Hans-Peter Röser, Akihiro Sasoh, Naoya Ogita, Noritsugu Umehara, and Yosuke Tsukiyama 47
SESSION 2
LASER LIGHTCRAFT I

Experimental study on pulsed laser propulsion performance of parabolic thrusters
Rongqing Tan, Jing Chen, and Yijun Zheng 65

Investigation on multiple-pulse propulsion performance for a parabolic nozzle with inlet slit
Ming Wen, Yanji Hong, and Junling Song 74

Axial impulse generation of lightcraft engines with ~1 µs pulsed TEA CO₂ laser
D. A. Kenoyer, I. I. Salvador, and L. N. Myrabo 82

Beam-Riding behavior of lightcraft engines with ~1 µs pulsed TEA CO₂ laser
D. A. Kenoyer, I. I. Salvador, and L. N. Myrabo 93

Flow visualization of thrust-vectoring lightcraft engines with ~1µs pulsed TEA CO₂ laser

Beam-riding analysis of a parabolic laser-thermal thruster
Stefan Scharring, Hans-Albert Eckel, and Hans-Peter Röser 115

Three-dimensional numerical analysis for posture stability of laser propulsion vehicle
Masayuki Takahashi and Naofumi Ohnishi 132

SESSION 3
LASER LIGHTCRAFT II

Hypersonic inlet for a laser powered propulsion system
Alan Harrland, Con Doolan, Vincent Wheatley, and Dave Froning 145

2-D airbreathing lightcraft engine experiments in quiescent conditions
Israel I. Salvador, Leik N. Myrabo, Marco A. S. Minucci, Antonio C. de Oliveira, Paulo G. P. Toro, José B. Chanes Jr., and Israel S. Rego 158
2-D Air-breathing lightcraft engine experiments in hypersonic conditions
Israel I. Salvador, Leik N. Myrabo, Marco A. S. Minucci, Antonio C. de Oliveira, Paulo G. P. Toro, José B. Chanes Jr., and Israel S. Rego

Airbreathing laser propulsion experiments with 1 μm terawatt
*Pharos III* laser: Part 1
L. N. Myrabo, P. W. Lyons, R. A. Jones, S. Liu, and C. Manka

Airbreathing laser propulsion experiments with 1 μm terawatt
*Pharos III* laser: Part 2
L. N. Myrabo, P. W. Lyons, R. A. Jones, S. Liu, and C. Manka

SESSION 4
LASER ABLATION PROPULSION

Numerical study of thrust generation in the process of laser ablated doped polymer
Nanlei Li, Yanji Hong, and Xiuqian Li

Time-resolved force and Schlieren visualization study of TEA CO₂ laser ablation of water droplets
Xiuqian Li, Yanji Hong, Ming Wen, Jifei Ye, and Cunyan Cui

Effects of propellant surface morphology on laser ablative propulsion performance
Naoya Ogita, Mitsuhiro Shikida, and Akihiro Sasoh

The Bouguer-Lambert-Beer absorption law and non-planar geometries
John E. Sinko and Benjamin I. Oh

Experimental study on the effect of structural geometry of "ablation mode" thruster on propulsion performance
Long Li, Zhiping Tang, Xiaojun Hu, and Jie Peng

SESSION 5
DYNAMICS OF LASER-SUPPORTED DETONATION AND COMBUSTION

Numerical study on propulsion performance of the parabolic laser thruster with elongate cylinder nozzle
Fuqiang Cheng, Yanji Hong, Qian Li, and Ming Wen
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrust measurement of laser detonation thruster with a pulsed glass</td>
<td>Bin Wang, Taro Han, Keisuke Michigami, Kimiya Komurasaki, and Yoshihiro</td>
<td>282</td>
</tr>
<tr>
<td>laser</td>
<td>Arakawa</td>
<td></td>
</tr>
<tr>
<td>Pressure distribution on inner wall of parabolic nozzle in laser</td>
<td>Cunyan Cui, Yanji Hong, Ming Wen, Junling Song, and Juan Fang</td>
<td>290</td>
</tr>
<tr>
<td>propulsion with single pulse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical analysis of laser repetition rate and pulse numbers in</td>
<td>Junling Song, Yanji Hong, Ming Wen, and Qian Li</td>
<td>296</td>
</tr>
<tr>
<td>multi-pulsed laser propulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical models analysis of energy conversion process in air-breathing</td>
<td>Yanji Hong, Junling Song, Cunyan Cui, and Qian Li</td>
<td>306</td>
</tr>
<tr>
<td>laser propulsion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser wavelength dependency of laser supported detonation</td>
<td>Kohei Shimamura, Keisuke Michigami, Bin Wang, Toshikazu Yamaguchi,</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Kimiya Komurasaki, and Yoshihiro Arakawa</td>
<td></td>
</tr>
<tr>
<td>Photoionization in the precursor of laser supported detonation by</td>
<td>Kohei Shimamura, Keisuke Michigami, Bin Wang, Kimiya Komurasaki,</td>
<td>326</td>
</tr>
<tr>
<td>ultraviolet radiation</td>
<td>and Yoshihiro Arakawa</td>
<td></td>
</tr>
<tr>
<td>SESSION 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LASER ORBITAL DEBRIS REMOVAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What's new for laser orbital debris removal</td>
<td>Claude Phipps and Mike Lander</td>
<td>339</td>
</tr>
<tr>
<td>CLEANSPACE “small debris removal by laser illumination and</td>
<td>Bruno Esmiller and Christophe Jacqueland</td>
<td>347</td>
</tr>
<tr>
<td>complementary technologies”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser-based space debris monitoring</td>
<td>Uwe Voelker, Ivo Buske, Thomas Hall, Bernd Hüttner, and Wolfgang Riede</td>
<td>354</td>
</tr>
</tbody>
</table>
SESSION 7
MICROPROPULSION

Applications of microthrusters for satellite missions and formation flights scenarios
H. Dittus and T. van Zoest 367

Microthruster research activities at DLR Stuttgart—Status and perspective
Stephanie Karg, Stefan Scharring, and Hans-Albert Eckel 374

Experimental investigation of the reflection mode micro laser propulsion under highly frequent and multi pulse laser
Xinghua Zhang, Jian Cai, and Long Li 383

Acceleration mechanism of pulsed laser-electromagnetic hybrid thruster
Hideyuki Horisawa, Yuki Mashima, and Osamu Yamada 391

SESSION 8
FLOW CONTROL AND DIRECTED ENERGY AIRSPIKES

Experimental investigation of laser-sustained plasma in supersonic argon flow
David Sperber, Hans-Albert Eckel, Peter Moessinger, and Stefanos Fasoulas 405

Experiment of flow control using laser energy deposition around high speed propulsion system
Hyoung Jin Lee, InSeuck Jeung, SangHun Lee, and Seihwan Kim 416

Efficient supersonic drag reduction using repetitive laser pulses of up to 80 kHz
Akihiro Sasoh, Jae-Hyung Kim, Kiyokazu Yamashita, Takeharu Sakai, and Atsushi Matsuda 424

The influence of flight altitude on supersonic drag reduction with laser energy depositions
Juan Fang, Yanji Hong, Qian Li, Ming Wen, and Zhun Liu 430

Conductive channel for energy transmission
Victor V. Apollonov 437
SESSION 9
MICROWAVE PROPULSION

Engine cycle analysis of air breathing Microwave Rocket with reed valves
Masafumi Fukunari, Reiji Komatsu, Toshikazu Yamaguchi, Kimiya Komurasaki, Yoshihiro Arakawa, and Hiroshi Katsurayama 447

Unsteady numerical analysis of microwave/laser-supported plasma
Hiroyuki Shiraishi 457

Millimeter-wave beam conversion with quasi-optical mirrors for Microwave Rocket launch demonstration
Toshikazu Yamaguchi, Kimiya Komurasaki, Yasuhisa Oda, Ken Kajiwara, Koji Takahashi, and Keishi Sakamoto 467

Millimeter-wave driven shock wave for a pulsed detonation Microwave Rocket
Toshikazu Yamaguchi, Reiji Komatsu, Masafumi Fukunari, Kimiya Komurasaki, Yasuhisa Oda, Ken Kajiwara, Koji Takahashi, and Keishi Sakamoto 478

SESSION 10
ADVANCED BEP CONCEPTS

Remote electric power transfer between spacecrafts by infrared beamed energy
Boris E. Chertok, Roman A. Evdokimov, Victor P. Legostaev, Vitaliy A. Lopota, Boris A. Sokolov, and Vjacheslav Yu. Tugaenko 489

Author Index 497