Biological Control of Plant-parasitic Nematodes, 2nd Edition

Soil Ecosystem Management in Sustainable Agriculture

Graham R. Stirling

Biological Crop Protection Pty Ltd, Brisbane, Australia
Contents

Foreword xv
Preface xix
Acknowledgements xxiii

SECTION I SETTING THE SCENE

1 Ecosystem Services and the Concept of 'Integrated Soil Biology Management' 3
 Agriculture from an Ecological Perspective 3
 Biotic Interactions within the Soil Food Web 4
 Biological Control of Plant-parasitic Nematodes 5
 Sustainable Agriculture 6
 Soil Health 7
 The Rise of Conservation Agriculture 7
 Biological Control of Nematodes: Current Status and the Way Forward 7
 Integrated Soil Biology Management 9
 Transferring Ecological Knowledge into Practical Outcomes 10

SECTION II THE SOIL ENVIRONMENT, SOIL ECOLOGY, SOIL HEALTH AND SUSTAINABLE AGRICULTURE

2 The Soil Environment and the Soil–Root Interface 15
 The Process of Soil Formation and the Composition of Soil 16
 The soil mineral fraction 16
 Soil organic matter 16
 Impact of Organic Matter on Soil Properties 19
 Organic matter and soil physical fertility 19
 Organic matter and soil chemical fertility 21
 Organic matter and soil biological fertility 22
 The Soil Environment and Its Impact on Nematodes and Other Soil Organisms 23
 Physical structure 23
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil water</td>
<td>24</td>
</tr>
<tr>
<td>Aeration</td>
<td>25</td>
</tr>
<tr>
<td>pH</td>
<td>26</td>
</tr>
<tr>
<td>Soil temperature</td>
<td>27</td>
</tr>
<tr>
<td>The Soil–Root Interface</td>
<td>27</td>
</tr>
<tr>
<td>roots and rhizodeposits: the energy source that sustains the soil biological community</td>
<td>28</td>
</tr>
<tr>
<td>microbial inhabitants of the soil and rhizosphere</td>
<td>32</td>
</tr>
<tr>
<td>microbial colonization of the rhizosphere</td>
<td>34</td>
</tr>
<tr>
<td>communication within the rhizosphere</td>
<td>35</td>
</tr>
<tr>
<td>plant–microbe–faunal interactions in the rhizosphere</td>
<td>36</td>
</tr>
<tr>
<td>effects of rhizosphere inhabitants on plant growth</td>
<td>40</td>
</tr>
<tr>
<td>manipulating the rhizosphere community</td>
<td>41</td>
</tr>
<tr>
<td>implications for biological control</td>
<td>43</td>
</tr>
<tr>
<td>impact of the soil environment</td>
<td>43</td>
</tr>
<tr>
<td>multutrophic interactions in a complex environment</td>
<td>44</td>
</tr>
<tr>
<td>the soil and rhizosphere as a source of antagonists</td>
<td>45</td>
</tr>
<tr>
<td>establishment of biological control agents in soil and the rhizosphere</td>
<td>46</td>
</tr>
<tr>
<td>manipulating the soil biological community</td>
<td>46</td>
</tr>
<tr>
<td>the role of organic matter</td>
<td>47</td>
</tr>
<tr>
<td>3 The Soil Food Web and the Soil Nematode Community</td>
<td>48</td>
</tr>
<tr>
<td>major groups of organisms in soil</td>
<td>48</td>
</tr>
<tr>
<td>microbiota</td>
<td>49</td>
</tr>
<tr>
<td>microfauna</td>
<td>49</td>
</tr>
<tr>
<td>mesofauna</td>
<td>50</td>
</tr>
<tr>
<td>macrofauna</td>
<td>50</td>
</tr>
<tr>
<td>structure of the soil food web</td>
<td>50</td>
</tr>
<tr>
<td>impact of land management on energy channels within the soil food web</td>
<td>52</td>
</tr>
<tr>
<td>interactions within the soil food web</td>
<td>55</td>
</tr>
<tr>
<td>regulation of populations by resource supply and predation</td>
<td>56</td>
</tr>
<tr>
<td>impacts of the soil food web on ecosystem processes:</td>
<td>57</td>
</tr>
<tr>
<td>storage and cycling of nutrients</td>
<td></td>
</tr>
<tr>
<td>the soil nematode community</td>
<td>59</td>
</tr>
<tr>
<td>trophic groups within the soil nematode community</td>
<td>59</td>
</tr>
<tr>
<td>a functional guild classification for soil nematodes</td>
<td>62</td>
</tr>
<tr>
<td>ecological roles of free-living nematodes</td>
<td>62</td>
</tr>
<tr>
<td>microbial feeding</td>
<td>63</td>
</tr>
<tr>
<td>microbial transport</td>
<td>65</td>
</tr>
<tr>
<td>nutrient cycling</td>
<td>65</td>
</tr>
<tr>
<td>regulation of populations</td>
<td>66</td>
</tr>
<tr>
<td>plant-parasitic nematodes</td>
<td>67</td>
</tr>
<tr>
<td>major groups of plant-feeding nematodes and their economic impact</td>
<td>67</td>
</tr>
<tr>
<td>population dynamics and damage thresholds</td>
<td>70</td>
</tr>
<tr>
<td>implications for biological control</td>
<td>71</td>
</tr>
<tr>
<td>the role of the soil food web and the soil environment</td>
<td>71</td>
</tr>
<tr>
<td>major crops and nematode pests: their relevance to biological control</td>
<td>72</td>
</tr>
<tr>
<td>endoparasitic nematodes as a target for biological control agents</td>
<td>74</td>
</tr>
<tr>
<td>sedentary endoparasites</td>
<td>74</td>
</tr>
<tr>
<td>migratory endoparasites</td>
<td>75</td>
</tr>
<tr>
<td>features that protect plant-parasitic nematodes</td>
<td>76</td>
</tr>
<tr>
<td>from parasitism and predation</td>
<td></td>
</tr>
</tbody>
</table>
Nematophagous oomycetes: *Myzocytiopsis, Haptoglossa, Nematophthora* and Lagenidiaceae 113
Cyst and egg parasites 115
Pochonia 115
Purpureocillium 119
Brachyphoris, Vermispora and the ARF fungus 123
Other fungi 124
Fungal–Nematode Interactions in Soil 127
Saprophytic and parasitic modes of nutrition 127
Factors influencing the saprophytic and parasitic activity of nematophagous fungi in soil 127
Density-dependent response as nematode populations increase 127
Competition from other soil organisms for nutrients 128
Competition for nitrogen in high-carbon, low-nitrogen environments 130
Nematophagous Fungi as Agents for Suppressing Nematode Populations 131
Occurrence in agricultural soils 131
Population density and predacious activity in soil 132
The regulatory capacity of nematophagous fungi 136
Endoparasitic fungi 137
Nematode-trapping fungi 138
Cyst and egg parasites 139
Host specificity within the nematophagous fungi 139
Interactions between nematophagous fungi and nematodes in the rhizosphere 140
Association of nematode-trapping and endoparasitic fungi with roots 141
Rhizosphere competence of fungi and oomycetes capable of parasitizing nematode cysts and eggs 141
Nematophagous fungi and entomopathogenic nematodes 142
Citrus root weevil, entomopathogenic nematodes and nematophagous fungi in citrus soil 143
Moth larvae, entomopathogenic nematodes and nematophagous fungi in natural shrub-land soil 144
The impact of organic matter on predacious activity 146
Other factors influencing predacious activity 150
Maximizing the Predacious Activity of Nematophagous Fungi in Agricultural Soils 152
6 Nematodes, Mites and Collembola as Predators of Nematodes, and the Role of Generalist Predators 157
Predatory Nematodes 157
Characteristics of the five major groups of predatory nematodes 158
The prey of predatory soil nematodes 159
Predatory nematodes as regulatory forces in the soil food web 163
Impacts of agricultural management on omnivorous nematodes and generalist predators 164
Short- and long-term effects of soil fumigation 164
Negative effects of other agricultural management practices 165
Management to maintain a well-structured soil food web 167
Maintaining the suppressive services provided by predatory nematodes and other generalist predators 170
Predatory nematodes and inundative biocontrol 171
Microarthropods as Predators of Nematodes 171
The main members of the soil mesofauna: mites, Collembola and Symphyla 171
Evidence of nematophagy in various groups of microarthropods 172
Results from field observations, feeding studies and analyses of gut contents 172
Detection of predation using stable isotope ratios and molecular techniques 174
Studies of ‘fungivorous’ and ‘predatory’ arthropods in microcosms 175
Mesostigmata as predators of nematodes in agroecosystems 177
Management to enhance microarthropod abundance and diversity in agricultural soils 178
Miscellaneous Predators of Nematodes 181
Generalist Predators as Suppressive Agents 182
Concluding Remarks 185
Generalist predators as indicators of ecological complexity and a capacity to suppress pests 185
Conservation (or autonomous) biological control 186
Practices associated with developing self-regulating agroecosystems 188
The disconnect between agricultural scientists, soil ecologists and the farming community 188

7 Obligate Parasites of Nematodes: Viruses and Bacteria in the Genus Pasteuria 193
Viral Infectious Agents of Nematodes 193
Bacteria in the Genus Pasteuria 194
Distribution, host range and diversity 194
Taxonomy, systematics and phylogeny 194
Pasteuria penetrans: A Parasite of Root-knot Nematodes (Meloidogyne spp.) 196
Life cycle and development 196
Pathogenicity, pathogenesis and the impact of temperature 198
Host specificity 199
Estimating endospore numbers in soil 200
The interaction between P. penetrans and its nematode host in soil 201
Endospore production and release into soil 202
The impact of the physical and chemical environment on endospores, and on the spore-attachment process 202
Impact of spore concentration on nematode infectivity and fecundity 204
Miscellaneous factors influencing the production and survival of endospores in soil 208
The potential of P. penetrans as a biological control agent 209
Pasteuria as a Parasite of Cyst Nematodes (Heterodera and Globodera spp.) 210
Taxonomy, phylogeny and host specificity 210
Ecology and biological control potential 211
Candidatus Pasteuria usgae Parasitic on Sting Nematode (Belonolaimus longicaudatus) 212
Taxonomy and host specificity 212
Ecology and biological control potential 213
Commercial products created by in vitro culture 216
Pasteuria as a Parasite of Other Plant-parasitic and Free-living Nematodes 216
Parasitism of root-lesion nematodes (Pratylenchus spp.) by Pasteuria thornei 216
Parasitism of citrus nematode (Tylenchulus semipenetrans) by Pasteuria 217
An isolate of Pasteuria parasitizing a reniform nematode (Rotylenchulus reniformis) 218
Density-dependent parasitism of *Xiphinema diversicaudatum* by *Pasteuria* 218
Associations between *Pasteuria* and other nematodes 219
Concluding Remarks 220

SECTION IV PLANT-MICROBIAL SYMBIONT-NEMATODE INTERACTIONS

8 Arbuscular Mycorrhizal Fungi, Endophytic Fungi, Bacterial Endophytes and Plant Growth-promoting Rhizobacteria 225

Arbuscular Mycorrhizal Fungi 225
Benefits to plants from a symbiotic relationship 225
with arbuscular mycorrhizal fungi 226
Enhanced nutrient uptake 226
Drought tolerance 227
Improved soil structure 227
Disease resistance 227
Interactions between plants, arbuscular mycorrhizal fungi and plant-parasitic nematodes 228
Management to enhance arbuscular mycorrhizal fungi 231
Reduced tillage 231
Fallow management, cropping intensity, crop sequence and cover cropping 231
Other crop and soil management practices 232
Improving soil and plant health, and managing nematodes with arbuscular mycorrhizal fungi 233
Endophytic Fungi 234
Grass endophytes 235
Fusarium endophytes 236
Nematode control with endophytic strains of *Fusarium oxysporum* 236
Approaches to utilizing *Fusarium*-mediated resistance to plant-parasitic nematodes 238
Endophytic nematophagous fungi 239
Concluding remarks on fungal endophytes: moving into uncharted waters 239
Bacterial Endophytes and Rhizosphere-inhabiting Bacteria 239
Mechanisms associated with growth promotion by rhizobacteria 240
Provision of nutrients 241
Production of plant growth regulators 241
Suppression of soilborne pathogens 241
The impact of plant growth-promoting rhizobacteria on plant-parasitic nematodes 241
Interactions between rhizosphere- and root-inhabiting bacteria and plant-parasitic nematodes 244
Mechanisms by which root-associated bacteria influence plant-parasitic nematodes 245
Production of bioactive compounds 245
Chitinolytic, proteolytic and lipolytic activity 246
Induction of systemic resistance 248
Manipulating populations of rhizobacteria for nematode management 249
Impact of crop rotation, organic amendments and other practices 249
Root-associated Symbionts: Only One Component of the Rhizosphere Microbiome 250
SECTION V NATURAL SUPPRESSION
AND INUNDATIVE BIOLOGICAL CONTROL

9 Suppression of Nematodes and Other Soilborne Pathogens
with Organic Amendments
Organic Matter-mediated Suppressiveness for Managing
Soilborne Diseases
Sources of organic matter for use as amendments,
and their beneficial effects
Impact of organic source and application rate on disease suppression
Effects on pathogen populations and disease
Variation in responses to organic inputs
Mechanisms of action
Indicators of broad-spectrum disease suppressiveness
Organic Matter-mediated Suppressiveness
to Plant-parasitic Nematodes
Soil fertility and plant nutrition effects of organic amendments
Nematicidal compounds from decomposing organic matter
Pre-formed chemicals in plant materials
Chemicals released during the decomposition process
The contribution of phytochemicals to the nematicidal effects
of organic amendments
Nematicidal properties of nitrogenous amendments
Enhancing biological control mechanisms with organic amendments
Impact of amendments on natural enemies, particularly
nematophagous fungi
The capacity of different types of organic matter to enhance
biological mechanisms of nematode suppression
Amendments with a high C:N ratio: are they the key
to more sustained suppressiveness?
Temporal effects of amending soil with organic matter
Incorporation of amendments versus mulching
The way forward: combining multiple mechanisms of action

10 Specific Suppression of Plant-parasitic Nematodes
The Role of Fungi and Oomycetes in the Decline of Heterodera avenae
Parasitism of Meloidogyne spp. on Peach by Brachyphoris oviparasitica
Suppression of Heterodera schachtii by Brachyphoris oviparasitica
and Other Fungi
Parasitism of Mesocriconema xenoplax and Heterodera spp.
by Hirsutella rhossiliensis
Decline of Heterodera glycines and the Possible Role of Egg-parasitic Fungi
Suppression of Root-knot Nematode by Pochonia chlamydosporia
and Other Organisms
Suppression of Heterodera glycines and Sudden Death Syndrome of Soybean
Suppression of Root-knot Nematodes by Pasteuria penetrans
Suppression of Heterodera glycines by Pasteuria nishizawaiæ
Management Options to Enhance Specific Suppressiveness
The role of tolerance, resistance and crop rotation
The impact of tillage
Integrated management to improve the efficacy of Pasteuria
Making Better Use of Natural Control: The Way Forward
11 Integrated Soil Biology Management: The Pathway to Enhanced Natural Suppression of Plant-parasitic Nematodes

- Assessing Soils for Suppressiveness to Plant-parasitic Nematodes
 - Survey methods to identify nematode-suppressive soils
 - Bioassays for suppressiveness
 - Indicators of suppressiveness

- Modifying Farming Systems to Enhance Suppressiveness

- Organic Matter Management: The Key to General Suppressiveness
 - Management impacts on soil carbon, and flow-on effects to the soil biota
 - Tillage and its impact on suppressiveness
 - Using organic amendments, cover crops and mulches to enhance suppressiveness

- Impact of Management on Specific Suppressiveness

- Integrated Nematode Management or Integrated Soil Biology Management?

- Integrated Soil Biology Management in Various Farming Systems:
 - The Pathway to Enhanced Suppressiveness
 - Grains, oilseeds, pulses, fibre crops and pastures
 - The key role of conservation agriculture
 - Integration of pastures into crop-based farming systems
 - Impact of management on soil biological parameters

- Vegetable crops
 - Organic amendments
 - Crop rotation, cover cropping and other practices
 - Integrated management

- Perennial crops
 - Enhancement of general suppressiveness
 - Enhancement of specific suppressiveness
 - An example of progress: nematode-suppressive soils in sugarcane

- Organic farming systems

- Impediments to the Development and Adoption of Farming Systems that Improve Soil Health and Enhance Suppressiveness

12 Biological Products for Nematode Management

- Experimental Methods

- General Soil Bioassays and the Fate of Introduced Organisms

- Monitoring Introduced Biological Control Agents

- Commercial Implementation of Biological Control

- Inundative Biological Control of Nematodes: An Assessment of Progress with a Diverse Range of Potentially Useful Organisms
 - Nematode-trapping fungi
 - Endoparasitic fungi
 - Cyst and egg parasites
 - *Pochonia*
 - *Purpureocillium*
 - *Trichoderma*
 - Other fungi
 - *Pasteuria*
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predatory and entomopathogenic nematodes, and microarthropods</td>
<td>375</td>
</tr>
<tr>
<td>Plant growth-promoting rhizobacteria and endophytes</td>
<td>377</td>
</tr>
<tr>
<td>Rhizobacteria and bacterial endophytes</td>
<td>377</td>
</tr>
<tr>
<td>Arbuscular mycorrhizal fungi</td>
<td>379</td>
</tr>
<tr>
<td>Fusarium endophytes</td>
<td>381</td>
</tr>
<tr>
<td>Combinations of Biocontrol Agents</td>
<td>383</td>
</tr>
<tr>
<td>The Role of Organic Amendments in Enhancing</td>
<td>385</td>
</tr>
<tr>
<td>the Performance of Biological Products for Nematode Control</td>
<td></td>
</tr>
<tr>
<td>Inundative Biological Control as a Component of Integrated Nematode Management</td>
<td>386</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>387</td>
</tr>
</tbody>
</table>

SECTION VI SUMMARY, CONCLUSIONS, PRACTICAL GUIDELINES AND FUTURE RESEARCH

13 Biological Control as a Component of Integrated Nematode Management: The Way Forward

Ecosystem Services Provided by the Soil Biological Community, and the Key Role of Organic Matter | 393 |
Farming Systems to Improve Soil Health and Sustainability | 394 |
WillSuppressiveness be Enhanced by Modifying the Farming System? | 395 |
 - The impact of plant residues, root exudates and other sources of organic matter on natural enemies of nematodes | 395 |
 - The role of continual cropping and increased cropping intensities | 396 |
 - Reducing tillage results in multiple benefits that will improve soil health and enhance suppressiveness | 397 |
The Role of Inundative and Inoculative Biological Control | 398 |
Moving from Theory to Practice: Issues Requiring Attention | 398 |
Assessment of suppressive services in long-term trials | 399 |
Relationships between soil carbon status, biological activity, biodiversity and general suppressiveness | 400 |
Management of specific suppressiveness | 400 |
Understanding interactions between the nematode community, natural enemies and organic matter | 401 |
Food preferences of parasites and predators in the soil environment | 402 |
Improved monitoring and diagnostic services for nematode pests and their natural enemies | 403 |
Coping with biological complexity | 403 |
Multidisciplinary research, innovation networks, research/extension models and the role of farmers | 404 |
The efficacy of inundative biological control in complex and dynamic soil environments | 405 |
Concluding Remarks | 406 |

14 A Practical Guide to Improving Soil Health and Enhancing Suppressiveness to Nematode Pests

Sustainable Agriculture and its Ecological Basis | 408 |
Biological communities and ecosystem services | 408 |
Soil biological communities | 409 |
The soil food web | 409 |
Soil physical and chemical fertility, and the role of organic matter | 412 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil fertility decline and the impact of management</td>
<td>413</td>
</tr>
<tr>
<td>Excessive tillage</td>
<td>413</td>
</tr>
<tr>
<td>Inadequate residue management</td>
<td>414</td>
</tr>
<tr>
<td>Excessive fertilizer and pesticide inputs</td>
<td>414</td>
</tr>
<tr>
<td>Soil compaction</td>
<td>414</td>
</tr>
<tr>
<td>Sustainable farming systems</td>
<td>414</td>
</tr>
<tr>
<td>A Guide to Improving Soil Health and Minimizing Losses from Soilborne Diseases</td>
<td>415</td>
</tr>
<tr>
<td>Step 1. Assess soil health</td>
<td>415</td>
</tr>
<tr>
<td>Step 2. Assess impacts of the farming system on soil health and consider options for improvement</td>
<td>415</td>
</tr>
<tr>
<td>Step 3. Modify soil and crop management practices and assess the outcomes</td>
<td>416</td>
</tr>
<tr>
<td>Biological Control of Nematodes: One of Many Important Ecosystem Services</td>
<td>417</td>
</tr>
<tr>
<td>Nematode-suppressive soils</td>
<td>418</td>
</tr>
<tr>
<td>Nematode Management within Sustainable Farming Systems</td>
<td>420</td>
</tr>
<tr>
<td>Examples of potentially sustainable farming systems</td>
<td>420</td>
</tr>
<tr>
<td>Large-scale production of grains, oilseeds, fibre crops and pastures</td>
<td>420</td>
</tr>
<tr>
<td>Vegetable crops</td>
<td>421</td>
</tr>
<tr>
<td>Perennial trees and vines</td>
<td>422</td>
</tr>
<tr>
<td>Other crops</td>
<td>423</td>
</tr>
<tr>
<td>Indicators of improvement</td>
<td>423</td>
</tr>
<tr>
<td>Potential problems and possible solutions</td>
<td>424</td>
</tr>
<tr>
<td>Conclusions</td>
<td>424</td>
</tr>
<tr>
<td>Questions Related to Soil Health, Soil Organic Matter and Nematode Management</td>
<td>425</td>
</tr>
<tr>
<td>Useful Information on Soil Health</td>
<td>427</td>
</tr>
<tr>
<td>References</td>
<td>429</td>
</tr>
<tr>
<td>Index of Soil Organisms by Genus and Species</td>
<td>495</td>
</tr>
<tr>
<td>General Index</td>
<td>501</td>
</tr>
</tbody>
</table>