Krzysztof Grąbczewski

Meta-Learning in Decision Tree Induction
Contents

1 Introduction ... 1
 1.1 Learning Machines and Meta-Learning 2
 1.2 Basic Definitions and Notations 4

2 Techniques of Decision Tree Induction 11
 2.1 Recursive Top-Down Splits 12
 2.2 Univariante Decision Trees 14
 2.2.1 ID3 .. 14
 2.2.2 CART ... 16
 2.2.3 C4.5 .. 18
 2.2.4 Cal5 ... 20
 2.2.5 FACT, QUEST and CRUISE 23
 2.2.6 CTree .. 31
 2.2.7 SSV ... 34
 2.2.8 ROC-Based Trees 36
 2.3 Multivariate Decision Trees 39
 2.3.1 LMDT .. 40
 2.3.2 OC1 ... 43
 2.3.3 LTree, QTree and LgTree 45
 2.3.4 DT-SE, DT-SEP and DT-SEPIR 48
 2.3.5 LDT ... 50
 2.3.6 Dipolar Criteria for DT Induction 53
 2.4 Generalization Capabilities of Decision Trees 55
 2.4.1 Stop Criteria 56
 2.4.2 Direct Pruning Methods 57
 2.4.3 Validation Based Pruning 63
 2.5 Search Methods for Decision Tree Induction 70
 2.6 Decision Making with Tree Structures 77
 2.7 Unbiased Feature Selection 79
 2.8 Ensembles of Decision Trees 86
 2.8.1 Option Decision Trees 88
 2.8.2 Bagging and Wagging 89
 2.8.3 Boosting 91
5 Meta-Level Analysis of Decision Tree Induction

5.1 Results Comparison Techniques
5.1.1 Bad Testing Practices
5.1.2 Reliable and Just Comparisons

5.2 Test Scenarios for DT Induction Analyses

5.3 Single Decision Tree Models
5.3.1 Algorithms
5.3.2 Experiment
5.3.3 General Results Visualization and Analysis
5.3.4 Analysis of Results Subgroups
5.3.5 Summary

5.4 Cross-Validation Committees
5.4.1 DTCV Committee Algorithm
5.4.2 Experiment
5.4.3 Win Counts
5.4.4 DTCV Committees Versus Single Validated Trees
5.4.5 DTCV Committees Versus Bagging and Boosting
5.4.6 Algorithm Parameters Analysis
5.4.7 Summary

References

6 Meta-Learning

6.1 Meta-Learning Approaches
6.1.1 No Free Lunch Theorems
6.1.2 Ensembles of Decision Models
6.1.3 Meta-Level Regression
6.1.4 Rankings of Algorithms
6.1.5 Meta-Learning as Active Search

6.2 Meta-Learning as Search with Feedback from Validation
6.2.1 The Algorithm
6.2.2 Proper Meta-Learners
6.2.3 Task Requests and Task Running

6.3 Meta-Learning with Configuration Generators
and Complexity Control
6.3.1 CDML as an Instance of GML
6.3.2 Machine Configuration Generators
6.3.3 Complexity Control
6.3.4 Analysis of Finished Tasks and the Quarantine
6.3.5 Machine Complexity Evaluation
6.3.6 Learning Evaluators
6.3.7 Example Experiment

6.4 Profile-Based Meta-Learning
6.4.1 The Algorithm
6.4.2 Profile Management
7 Future Perspectives of Meta-Learning

Appendix A.

Appendix B.

Index