Ocean Circulation and Climate
A 21st Century Perspective

Edited by

Gerold Siedler
Helmholtz Centre for Ocean Research
Kiel, Germany

Stephen M. Griffies
NOAA Geophysical Fluid Dynamics Laboratory
Princeton, USA

John Gould
National Oceanography Centre
Southampton, UK

John A. Church
Centre for Australian Weather and Climate Research
A Partnership between CSIRO and the Bureau of Meteorology, Hobart, Australia
Contents

Contributors xv
Acknowledgments xix
Preface xxi

Part I

The Ocean's Role in the Climate System

1. **The Ocean as a Component of the Climate System**
 - Thomas F. Stocker
 1. Setting the Scene 3
 2. The Ocean as an Exchanging Earth System Reservoir 5
 3. Atmosphere–Ocean Fluxes and Meridional Transports 8
 4. Global-Scale Surface and Deep Ocean Circulations 11
 5. Large-Scale Modes of Variability Involving the Ocean 15
 6. The Ocean's Role in Past Climate Change 17
 7. The Ocean in the Anthropocene 20
 8. Concluding Thoughts 25
 Acknowledgments 25
 References 25

2. **Paleoclimatic Ocean Circulation and Sea-Level Changes**
 - Stefan Rahmstorf and Georg Feulner
 1. Introduction 31
 2. Reconstructing Past Ocean States 32
 1. Proxies for Past Ocean Circulation 32
 2. Past Sea-Level Proxies 34
 2.3. Models 38
 3. The Oceans in the Quaternary 39
 1. The Last Glacial Maximum 40
 2. Abrupt Glacial Climate Changes 42
 3. Glacial Cycles 45
 3.4. Interglacial Climates 46

4. **The Deeper Past**
 4.1. Challenges of Deep-Time Paleoenvironmentography 46
 4.2. The Oceans During the Mid-Cretaceous Warm Period 48

5. **Outlook**
 Acknowledgments 52
 References 52

Part II

Ocean Observations

3. **In Situ Ocean Observations: A Brief History, Present Status, and Future Directions**
 - John Gould, Bernadette Sloyan and Martin Visbeck
 1. Introduction 59
 2. Development of Present Observational Capability
 2.1. Late Nineteenth to Mid-Twentieth Centuries 60
 2.2. Second Half of Twentieth Century 61
 2.3. Twenty-First Century: Consolidation of Capabilities and Growth of Sustained Observations 65
 3. Emerging and Specialized Ocean Observing Technologies 70
 3.1. Advanced Observing Platforms 70
 3.2. Specialized Observing Systems and Technologies 71
 3.3. New Sensors 71
 4. Changes in Data Volume and Coverage and Implication for Synthesis Products 72
 5. The Future: Outstanding Issues and a New Framework for Global Ocean Observing
 5.1. Building on OceanObs'09 75
 6. Conclusions 78
 References 79

Lee-Lueng Fu and Rosemary Morrow

1. Introduction 83
2. Ocean General Circulation 84
3. Variability of the Large-Scale Ocean Circulation 85
 3.1. Sea Surface Height 86
 3.2. Ocean Mass and Bottom Pressure 89
 3.3. Global Mean Sea-Level Change 90
 3.4. Forcing by the Atmosphere and Air-Sea Interaction 91
4. Mesoscale Eddies and Fronts 96
 4.1. Mapping the Eddy Field 96
 4.2. Wave Number Spectra and the Ocean Energy Cascade 98
 4.3. Seasonal and Interannual Variations in Eddy Energy 98
 4.4. Tracking Individual Eddies 100
 4.5. Surface Currents from Multisensor Mapping 102
 4.6. Eddy Fluxes of Ocean Properties 102
 4.7. Submesoscale Dynamics 103
 4.8. Eddies and Biogeochemical Processes 104
5. Summary and Outlook 105
Acknowledgments 106
References 106

Part III
Ocean Processes

5. Exchanges Through the Ocean Surface 115

Simon A. Josey, Serge Gulev and Lisan Yu

1. Introduction 115
2. Air-Sea Exchange Formulae and Climatological Fields 116
 2.1. Air-Sea Exchange Formulae 116
 2.2. Climatological Fields 117
3. Measurement Techniques and Review of Datasets 121
 3.1. Flux Measurement and Estimation Techniques 121
 3.2. Flux Datasets: Overview of Recent Products 123
 3.3. Flux Datasets: Evaluation Techniques 126
4. Variability and Extremes 128
 4.1. Impacts of Large-Scale Modes of Variability on Surface Fluxes 128
 4.2. Surface Flux Response to Anthropogenic Climate Change 129
 4.3. Transfers Under Extreme Conditions 131
5. Ocean Impacts 132
 5.1. Impacts on Near-Surface Ocean Layer Properties, Water Mass Transformation 132
 5.2. Impacts of Surface Fluxes on Ocean Circulation 133
6. Outlook and Conclusions 134
 6.1. Prospects for Improved Flux Datasets 134
 6.2. Prospects for Enhanced Observational Constraints 135
 6.3. Conclusions 135
Acknowledgments 136
References 136

6. Thermodynamics of Seawater 141

Trevor J. McDougall, Rainer Feistel and Rich Pawlowicz

1. Introduction 141
2. Absolute Salinity S_A and Preformed Salinity S_0 144
 2.1. Reference-Composition Salinity S_R 144
 2.2. Absolute Salinity S_A 145
 2.3. Preformed Salinity S_0 147
3. The Gibbs-Function Approach to Evaluating Thermodynamic Properties 147
4. The First Law of Thermodynamics and Conservative Temperature Θ 149
5. The 48-Term Expression for Specific Volume 152
6. Changes to Oceanographic Practice Under TEOS-10 153
7. Ocean Modeling Using TEOS-10 154
8. Summary 155
Acknowledgments 157
References 157

7. Diapycnal Mixing Processes in the Ocean Interior 159

Jennifer MacKinnon, Lou St Laurent and Alberto C. Naveira Garabato

1. Introduction 159
2. Mixing Basics 161
3. Turbulence in and Below the Surface Mixed Layer 162
 3.1. Langmuir Turbulence 162
 3.2. Inertial Motions 162
 3.3. An Equatorial Example 163
 3.4. Fronts and Other Lateral Processes 163
4. Mixing in the Ocean Interior 164
 4.1. Internal Wave Breaking 164
 4.2. Mixing in Fracture Zones 168
4. High-Latitude EBCs 364
4.1. The Gulf of Alaska Circulation 365
5. Climate Variability and the Ocean's Eastern Boundaries 368
5.1. The Dominant Processes 368
5.2. Climate Modes 369
5.3. Changes in Processes 371
5.4. Relating Modes to Models 372
5.5. Effects of EBCs on Climate 373
6. Summary 373
Acknowledgments 374
References 374

15. The Tropical Ocean Circulation and Dynamics 385
Swadhin Behera, Peter Brandt and Gilles Reverdin

1. Introduction 385
2. Tropical Pacific Variability 387
2.1. Western Pacific Warm Pool 387
2.2. Climate Variations: ENSO and ENSO Modoki 389
3. Tropical Atlantic Variability 391
3.1. MOC and Western Boundary Circulation in the Tropical Atlantic 391
3.2. Climate Variability 394
4. Tropical Indian Ocean Variability 395
4.1. Monsoon Ocean Circulations and Upwelling Regimes 395
4.2. The IOD 398
4.3. MJO with Indian Ocean Focus 400
4.4. IOD, ENSO, and Monsoon Interactions 400
5. Progresses in Tropical Climate Predictions 401
6. Outlooks 402
Acknowledgments 404
References 404

16. The Marine Cryosphere 413
David M. Holland

1. Introduction 413
1.1. Marine Cryosphere 413
1.2. Ice Physics 415
1.3. Ocean Impacts 416
1.4. Relation to Other Chapters 417
2. Sea Ice 418
2.1. Observations 419
2.2. Modeling 420
2.3. Ocean Mixed-Layer Interaction 421
2.4. Polynyas 422
2.5. Impact on Water Masses, and Circulation 422
2.6. Biogeochemical Ramifications 423
3. Land Ice 423
3.1. Observations 423
3.2. Modeling 423
3.3. Ocean Mixed-Layer Interaction 425
3.4. Impacts on Water Masses 426
3.5. Geochemical Tracers 426
3.6. Sea-Level Change 427
4. Marine Permafrost 428
4.1. Pure Ice 428
4.2. Methane Clathrates 428
5. Emerging Capabilities 429
5.1. Ice-Capable Observations 429
5.2. Ocean-Capable Observations 429
5.3. Ice-Capable Modeling 432
6. Cryospheric Change 432
6.1. Observed Sea-Ice Change 432
6.2. Sea-Ice Projections 434
6.3. Observed Land-Ice Change 435
6.4. Land-Ice Projections 435
6.5. Marine Permafrost 436
7. Summary 436
Acknowledgments 437
References 437

17. The Arctic and Subarctic Oceans/Seas 443
Cecilie Mauritzen, Bert Rudels and John Toole

1. Introduction 443
1.1. Geography 444
2. Exchanges with the Subpolar Oceans and Beyond 444
2.1. Volume Transports 445
3. Currents and Water Mass Transformations in the Arctic/Subarctic 448
3.1. The Norwegian Atlantic Current 448
3.2. Arctic Ocean 448
3.3. Canadian Archipelago and Baffin Bay 453
3.4. East Greenland Current 454
4. Evidence of Long-term Changes in the Arctic/Subarctic 454
4.1. Introduction 454
4.2. Evidence for Change in the Arctic Ocean 455
5. Conclusions 463
Acknowledgments 464
References 464

18. Dynamics of the Southern Ocean Circulation 471
Stephen R. Rintoul and Alberto C. Naveira Garabato

1. Introduction 471
3. The Antarctic Circumpolar Current (ACC)
 3.1. Structure of the ACC 474
 3.2. Transport of the ACC 474
 3.3. Response of the ACC to Wind and Buoyancy Forcing 475
4. Southern Ocean Overturning Circulation
 4.1. Water Mass Transformations and Southern Ocean Overturning 477
 4.2. Estimates of the Rate of Southern Ocean Overturning 478
 4.3. Residual-Mean Circulation 479
 4.4. Eddy Stirring of PV 482
5. Southern Ocean Change
 5.1. Warming and Freshening of the Southern Ocean 483
 5.2. Changes in the Southern Ocean Inventory of Dissolved Gases 485
 5.3. Changes in Southern Ocean Water Masses 486
 5.4. Ocean–Ice Shelf Interaction 487
 5.5. Changes in Southern Ocean Sea Ice 487
 5.6. Causes of Recent Southern Ocean Change 487
6. Summary and Outstanding Challenges
 Acknowledgments 488
 References 488

19. Interocean and Interbasin Exchanges 493

Janet Sprintall, Gerold Siedler and Herlé Mercier

1. Introduction 493
2. Interocean Exchanges at Choke Points 495
 2.1. Drake Passage 495
 2.2. Agulhas System 497
 2.3. Indonesian Throughflow 499
3. Interbasin Exchanges
 3.1. Nordic Seas—Atlantic Ocean 502
 3.2. Mediterranean Sea—Atlantic Ocean 503
 3.3. Red Sea—Indian Ocean 505
 3.4. Okhotsk Sea—Pacific Ocean 507
4. Deep Passages
 4.1. Atlantic Ocean: Romanche Fracture Zone, Vema, and Hunter Channels 508
 4.2. Pacific Ocean: Samoan Passage, Wake Island Passage 509
 4.3. Indian Ocean: Southwest Indian Ridge, Amirante Passage 510
5. Discussion 510
 Acknowledgments 511
 References 511

Part V
Modeling the Ocean Climate System

20. Ocean Circulation Models and Modeling 521

Stephen M. Griffies and Anne Marie Treguier

1. Scope of this Chapter 521
2. Physical and Numerical Basis for Ocean Models 522
 2.1. Scales of Motion 522
 2.2. Thermo-Hydrodynamic Equations for a Fluid Parcel 523
 2.3. Approximation Methods 525
 2.4. Thermo-Hydrodynamic Equations for a Finite Region 526
2.5. Physical Considerations for Transport 529
2.6. Numerical Considerations for Transport 532
 2.7. Vertical Coordinates 533
 2.8. Unstructured Horizontal Grid Meshes 535
3. Ocean Modeling: Science Emerging from Simulations 536
 3.1. Design Considerations for Ocean–Ice Simulations 537
 3.2. Analysis of Simulations 540
4. Summary Remarks 543
 Acknowledgments 544
 References 544

21. Dynamically and Kinematically Consistent Global Ocean Circulation and Ice State Estimates 553

Carl Wunsch and Patrick Heimbach

1. Introduction 553
2. Definition 554
3. Data Assimilation and the Reanalyses 556
4. Ocean State Estimates 559
 4.1. Basic Notions 559
 4.2. The Observations 561
5. Global-Scale Solutions 561
 5.1. Summary of Major, Large-Scale Results 564
 5.2. Longer Duration Estimates 571
 5.3. Short-Duration Estimates 572
 5.4. Global High-Resolution Solutions 573
 5.5. Regional Solutions 573
6. The Uncertainty Problem 574
7. Discussion 575
 Acknowledgments 575
 References 576
26. Modeling Ocean Biogeochemical Processes and the Resulting Tracer Distributions 667

Christoph Heinze and Marion Gehlen

1. Goals of Ocean Biogeochemical Modeling within Climate Research 667
2. Concepts and Methods of Biogeochemical Ocean Modeling 668
 2.1. Tracer Conservation and Classification of Tracers 668
 2.2. Classification of Models 669
 2.3. Biogeochemical Cycles and Processes Included in BOGCMs 671
 2.4. Links Between the Water Column and Other Reservoirs 676
 2.5. Model Coupling, Model Resolution, and Model Complexity 678
3. Model Results, Evaluation, Skill, and Limits, and Model Data Fusion/Data Assimilation 679
 3.1. Ability of BOGCMs to Match Natural Tracer Distributions to First Order 679
 3.2. Optimization of BOGCMs 680
4. Major Marine Carbon Modeling Findings of the Recent Decade 682
 4.1. Future Biogeochemical Climate Projections Including Oceanic Carbon Cycle Feedback 682
 4.2. Modeling the Interaction of Ocean Circulation with Greenhouse Gas Fluxes and Biological Production 684
 4.3. Model Assessment and Detection Limits of Ocean Acidification 685
5. Conclusion 686
 Acknowledgments 686
 References 686