3 Fourier Series 86
 3.1 Introduction .. 86
 3.2 Statement of Convergence Theorem 88
 3.3 Fourier Cosine and Sine Series 92
 3.3.1 Fourier Sine Series 92
 3.3.2 Fourier Cosine Series 102
 3.3.3 Representing f(x) by Both a Sine and Cosine Series 105
 3.3.4 Even and Odd Parts 106
 3.3.5 Continuous Fourier Series 107
 3.4 Term-by-Term Differentiation of Fourier Series 112
 3.5 Term-By-Term Integration of Fourier Series 123
 3.6 Complex Form of Fourier Series 127

4 Wave Equation: Vibrating Strings and Membranes 130
 4.1 Introduction .. 130
 4.2 Derivation of a Vertically Vibrating String 130
 4.3 Boundary Conditions .. 133
 4.4 Vibrating String with Fixed Ends 137
 4.5 Vibrating Membrane ... 143
 4.6 Reflection and Refraction of Electromagnetic
 (Light) and Acoustic (Sound) Waves 145
 4.6.1 Snell's Law of Refraction 146
 4.6.2 Intensity (Amplitude) of Reflected and Refracted Waves 148
 4.6.3 Total Internal Reflection 149

5 Sturm–Liouville Eigenvalue Problems 151
 5.1 Introduction .. 151
 5.2 Examples .. 151
 5.2.1 Heat Flow in a Nonuniform Rod 151
 5.2.2 Circulially Symmetric Heat Flow 153
 5.3 Sturm–Liouville Eigenvalue Problems 155
 5.3.1 General Classification 155
 5.3.2 Regular Sturm–Liouville Eigenvalue Problem 156
 5.3.3 Example and Illustration of Theorems 157
 5.4 Worked Example: Heat Flow in a Nonuniform Rod without Sources 163
 5.5 Self-Adjoint Operators and Sturm–Liouville Eigenvalue Problems 167
 Appendix to 5.5: Matrix Eigenvalue Problem and Orthogonality
 of Eigenvectors ... 178
 5.6 Rayleigh Quotient ... 184
 5.7 Worked Example: Vibrations of a Nonuniform String 189
 5.8 Boundary Conditions of the Third Kind 192
 5.9 Large Eigenvalues (Asymptotic Behavior) 207
 5.10 Approximation Properties 211
6 Finite Difference Numerical Methods for Partial Differential Equations
6.1 Introduction .. 217
6.2 Finite Differences and Truncated Taylor Series 217
6.3 Heat Equation .. 224
 6.3.1 Introduction ... 224
 6.3.2 A Partial Difference Equation 224
 6.3.3 Computations ... 226
 6.3.4 Fourier–von Neumann Stability Analysis 228
 6.3.5 Separation of Variables for Partial Difference Equations
 and Analytic Solutions of Ordinary Difference Equations 235
 6.3.6 Matrix Notation ... 238
 6.3.7 Nonhomogeneous Problems 242
 6.3.8 Other Numerical Schemes 242
 6.3.9 Other Types of Boundary Conditions 243
6.4 Two-Dimensional Heat Equation 247
6.5 Wave Equation .. 250
6.6 Laplace’s Equation .. 253
6.7 Finite Element Method .. 260
 6.7.1 Approximation with Nonorthogonal Functions
 (Weak Form of the Partial Differential Equation) 260
 6.7.2 The Simplest Triangular Finite Elements 263

7 Higher-Dimensional Partial Differential Equations 268
7.1 Introduction .. 268
7.2 Separation of the Time Variable 269
 7.2.1 Vibrating Membrane: Any Shape 269
 7.2.2 Heat Conduction: Any Region 271
 7.2.3 Summary ... 272
7.3 Vibrating Rectangular Membrane 272
Appendix to 7.3: Outline of Alternative Method to Separate Variables 281
7.4 Statements and Illustrations of Theorems for the Eigenvalue
 Problem $\nabla^2\phi + \lambda\phi = 0$ 282
7.5 Green’s Formula, Self-Adjoint Operators, and Multidimensional
 Eigenvalue Problems ... 287
Appendix to 7.5: Gram–Schmidt Method 292
7.6 Rayleigh Quotient and Laplace’s Equation 293
 7.6.1 Rayleigh Quotient .. 293
 7.6.2 Time-Dependent Heat Equation and Laplace’s Equation 294
7.7 Vibrating Circular Membrane and Bessel Functions 295
 7.7.1 Introduction ... 295
 7.7.2 Separation of Variables 296
 7.7.3 Eigenvalue Problems (One-Dimensional) 297
 7.7.4 Bessel’s Differential Equation 299
 7.7.5 Singular Points and Bessel’s Differential Equation 299
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3.3 The Method of Eigenfunction Expansion for Green's Functions</td>
</tr>
<tr>
<td>9.3.4 The Dirac Delta Function and Its Relationship to Green's Functions</td>
</tr>
<tr>
<td>9.3.5 Nonhomogeneous Boundary Conditions</td>
</tr>
<tr>
<td>9.3.6 Limit of Time-Dependent Problem</td>
</tr>
<tr>
<td>Appendix to 9.3: Establishing Green's Formula with Dirac Delta Functions</td>
</tr>
<tr>
<td>9.4 Fredholm Alternative and Generalized Green's Functions</td>
</tr>
<tr>
<td>9.4.1 Introduction</td>
</tr>
<tr>
<td>9.4.2 Fredholm Alternative</td>
</tr>
<tr>
<td>9.4.3 Generalized Green's Functions</td>
</tr>
<tr>
<td>9.5 Green's Functions for Poisson's Equation</td>
</tr>
<tr>
<td>9.5.1 Introduction</td>
</tr>
<tr>
<td>9.5.2 Multidimensional Dirac Delta Function and Green's Functions</td>
</tr>
<tr>
<td>9.5.3 Green's Functions by the Method of Eigenfunction Expansion and the Fredholm Alternative</td>
</tr>
<tr>
<td>9.5.4 Direct Solution of Green's Functions (One-Dimensional Eigenfunctions) (Optional)</td>
</tr>
<tr>
<td>9.5.5 Using Green's Functions for Problems with Nonhomogeneous Boundary Conditions</td>
</tr>
<tr>
<td>9.5.6 Infinite Space Green's Functions</td>
</tr>
<tr>
<td>9.5.7 Green's Functions for Bounded Domains Using Infinite Space Green's Functions</td>
</tr>
<tr>
<td>9.5.8 Green's Functions for a Semi-Infinite Plane ($y > 0$) Using Infinite Space Green's Functions: The Method of Images</td>
</tr>
<tr>
<td>9.5.9 Green's Functions for a Circle: The Method of Images</td>
</tr>
<tr>
<td>9.6 Perturbed Eigenvalue Problems</td>
</tr>
<tr>
<td>9.6.1 Introduction</td>
</tr>
<tr>
<td>9.6.2 Mathematical Example</td>
</tr>
<tr>
<td>9.6.3 Vibrating Nearly Circular Membrane</td>
</tr>
<tr>
<td>9.7 Summary</td>
</tr>
<tr>
<td>10 Infinite Domain Problems: Fourier Transform Solutions of Partial Differential Equations</td>
</tr>
<tr>
<td>10.1 Introduction</td>
</tr>
<tr>
<td>10.2 Heat Equation on an Infinite Domain</td>
</tr>
<tr>
<td>10.3 Fourier Transform Pair</td>
</tr>
<tr>
<td>10.3.1 Motivation from Fourier Series Identity</td>
</tr>
<tr>
<td>10.3.2 Fourier Transform</td>
</tr>
<tr>
<td>10.3.3 Inverse Fourier Transform of a Gaussian</td>
</tr>
<tr>
<td>Appendix to 10.3: Derivation of the Inverse Fourier Transform of a Gaussian</td>
</tr>
<tr>
<td>10.4 Fourier Transform and the Heat Equation</td>
</tr>
<tr>
<td>10.4.1 Heat Equation</td>
</tr>
</tbody>
</table>
Contents

10.4.2 Fourier Transforming the Heat Equation: Transforms of Derivatives .. 455
10.4.3 Convolution Theorem ... 457
10.4.4 Summary of Properties of the Fourier Transform ... 461

10.5 Fourier Sine and Cosine Transforms: The Heat Equation on Semi-Infinite Intervals .. 463

10.5.1 Introduction ... 463
10.5.2 Heat Equation on a Semi-Infinite Interval I ... 463
10.5.3 Fourier Sine and Cosine Transforms .. 465
10.5.4 Transforms of Derivatives ... 466
10.5.5 Heat Equation on a Semi-Infinite Interval II... 467
10.5.6 Tables of Fourier Sine and Cosine Transforms ... 469

10.6 Worked Examples Using Transforms .. 473

10.6.1 One-Dimensional Wave Equation on an Infinite Interval .. 473
10.6.2 Laplace's Equation in a Semi-Infinite Strip .. 475
10.6.3 Laplace's Equation in a Half-Plane ... 479
10.6.4 Laplace's Equation in a Quarter-Plane .. 482
10.6.5 Heat Equation in a Plane (Two-Dimensional Fourier Transforms) .. 486
10.6.6 Table of Double Fourier Transforms .. 490

10.7 Scattering and Inverse Scattering .. 495

11 Green's Functions for Wave and Heat Equations .. 499

11.1 Introduction .. 499

11.2 Green's Functions for the Wave Equation .. 499

11.2.1 Introduction ... 499
11.2.2 Green's Formula for the Wave Equation ... 500
11.2.3 Reciprocity .. 502
11.2.4 Using the Green's Function .. 504
11.2.5 Green's Function for the Wave Equation ... 506
11.2.6 Alternate Differential Equation for the Green's Function .. 506
11.2.7 Infinite Space Green's Function for the One-Dimensional Wave Equation and d'Alembert's Solution ... 507
11.2.8 Infinite Space Green's Function for the Three-Dimensional Wave Equation (Huygens' Principle) .. 509
11.2.9 Two-Dimensional Infinite Space Green's Function ... 511
11.2.10 Summary ... 511

11.3 Green's Functions for the Heat Equation ... 514

11.3.1 Introduction ... 514
11.3.2 Non-Self-Adjoint Nature of the Heat Equation .. 515
11.3.3 Green's Formula for the Heat Equation ... 516
11.3.4 Adjoint Green's Function .. 517
11.3.5 Reciprocity .. 518
11.3.6 Representation of the Solution Using Green's Functions .. 518
11.3.7 Alternate Differential Equation for the Green's Function .. 520
12 The Method of Characteristics for Linear and Quasilinear Wave Equations

12.1 Introduction ... 527
12.2 Characteristics for First-Order Wave Equations ... 528
 12.2.1 Introduction ... 528
 12.2.2 Method of Characteristics for First-Order Partial Differential Equations ... 529
12.3 Method of Characteristics for the One-Dimensional Wave Equation 534
 12.3.1 General Solution ... 534
 12.3.2 Initial Value Problem (Infinite Domain) ... 536
 12.3.3 D'Alembert's Solution ... 540
12.4 Semi-Infinite Strings and Reflections ... 543
12.5 Method of Characteristics for a Vibrating String of Fixed Length 548
12.6 The Method of Characteristics for Quasilinear Partial Differential Equations ... 552
 12.6.1 Method of Characteristics ... 552
 12.6.2 Traffic Flow ... 553
 12.6.3 Method of Characteristics ($Q = 0$) ... 555
 12.6.4 Shock Waves ... 558
 12.6.5 Quasilinear Example ... 570
12.7 First-Order Nonlinear Partial Differential Equations ... 575
 12.7.1 Eikonal Equation Derived from the Wave Equation ... 575
 12.7.2 Solving the Eikonal Equation in Uniform Media and Reflected Waves ... 576
 12.7.3 First-Order Nonlinear Partial Differential Equations ... 579

13 Laplace Transform Solution of Partial Differential Equations ... 581

13.1 Introduction ... 581
13.2 Properties of the Laplace Transform ... 581
 13.2.1 Introduction ... 581
 13.2.2 Singularities of the Laplace Transform ... 582
 13.2.3 Transforms of Derivatives ... 586
 13.2.4 Convolution Theorem ... 587
13.3 Green's Functions for Initial Value Problems for Ordinary Differential Equations ... 591
13.4 A Signal Problem for the Wave Equation ... 593
13.5 A Signal Problem for a Vibrating String of Finite Length ... 597
13.6 The Wave Equation and Its Green's Function ... 600
13.7 Inversion of Laplace Transforms Using Contour Integrals in the Complex Plane 603
13.8 Solving the Wave Equation Using Laplace Transforms (with Complex Variables) 608

14 Dispersive Waves: Slow Variations, Stability, Nonlinearity, and Perturbation Methods 611
14.1 Introduction 611
14.2 Dispersive Waves and Group Velocity 612
 14.2.1 Traveling Waves and the Dispersion Relation 612
 14.2.2 Group Velocity I 615
14.3 Wave Guides 617
 14.3.1 Response to Concentrated Periodic Sources with Frequency ω_f 620
 14.3.2 Green's Function If Mode Propagates 620
 14.3.3 Green's Function If Mode Does Not Propagate 621
 14.3.4 Design Considerations 622
14.4 Fiber Optics 623
14.5 Group Velocity II and the Method of Stationary Phase 627
 14.5.1 Method of Stationary Phase 628
 14.5.2 Application to Linear Dispersive Waves 630
14.6 Slowly Varying Dispersive Waves (Group Velocity and Caustics) 634
 14.6.1 Approximate Solutions of Dispersive Partial Differential Equations 634
 14.6.2 Formation of a Caustic 636
14.7 Wave Envelope Equations (Concentrated Wave Number) 642
 14.7.1 Schrödinger Equation 643
 14.7.2 Linearized Korteweg–de Vries Equation 645
 14.7.3 Nonlinear Dispersive Waves: Korteweg–de Vries Equation 647
 14.7.4 Solitons and Inverse Scattering 650
 14.7.5 Nonlinear Schrödinger Equation 652
14.8 Stability and Instability 656
 14.8.1 Brief Ordinary Differential Equations and Bifurcation Theory 656
 14.8.2 Elementary Example of a Stable Equilibrium for a Partial Differential Equation 663
 14.8.3 Typical Unstable Equilibrium for a Partial Differential Equation and Pattern Formation 664
 14.8.4 Ill-posed Problems 667
 14.8.5 Slightly Unstable Dispersive Waves and the Linearized Complex Ginzburg–Landau Equation 668
 14.8.6 Nonlinear Complex Ginzburg–Landau Equation 670
 14.8.7 Long-Wave Instabilities 676
 14.8.8 Pattern Formation for Reaction–Diffusion Equations and the Turing Instability 676