Studies in Natural Products Chemistry

Volume 40

Edited by

Atta-ur-Rahman, FRS
International Center for Chemical and Biological Sciences
H.E.J. Research Institute of Chemistry
University of Karachi
Karachi, Pakistan
Contents

Contributors xiii
Preface xvii

1. Recent Insights into the Emerging Role of Triterpenoids in Cancer Therapy: Part I 1

Monica Rosa Loizzo, Francesco Menichini, and Rosa Tundis

Introduction 1
Mechanisms of the Antitumor Effect of Triterpenoids 2
The Oleanane Group 2
The Dammarane Group 7
The Hopane Group 10
The Lanostane Group 12
The Ursane Group 14
Concluding Remarks 23
References 27

2. Recent Advances in Medicinal Applications of Brassinosteroids, a Group of Plant Hormones 33

Andrzej Bajguz, Agnieszka J. Bajguz, and Elzbieta A. Tryniszewska

Introduction 33
Source of BRs 34
Toxicity of BRs 37
Similarity of BRs to Animal Steroid Hormones 37
Anabolic Effect of BRs 41
Anticancer and Antiproliferative Properties of BRs 42
Antiangiogenic Properties of BRs 43
Antiviral Properties of BRs 43
Neuroprotective Action of BRs 45
Concluding Remarks 46
References 48
3. Synthesis of Bioactive Natural Products by Propargylic Carboxylic Ester Rearrangements 51

Shazia Anjum, Elena Soriano, and José Luis Marco-Contelles

Introduction 51
Synthesis of Bioactive Natural Products by Rearrangement of Propargylic Esters via 1,2-Acyl Migration 53
Synthesis of Bioactive Natural Products by Rearrangement of Propargylic Esters via 1,3-Acyl Migration: [3,3]-Sigmatropic Rearrangement of Propargylic Esters 64
Conclusions 66
Acknowledgments 67
References 67

4. Catalytic Asymmetric Strategies for the Synthesis of 3,3-Disubstituted Oxindoles 71

Albert Moyano and Xavier Companyó

Introduction 71
Strategies Based on Cyclization Reactions for the Construction of the Lactam Ring 74
Asymmetric Rearrangements of O-Carbonylated Oxindoles and Related Processes 79
3-Substituted Oxindoles as Nucleophiles: Alkylation, Conjugate Addition, Aldol, and Mannich Reactions 81
Addition of Carbon Nucleophiles to Isatins or to Isatin Imines 100
Asymmetric Michael Additions to Isatin-Derived Electron-Deficient Alkenes and Related Processes 114
Amination, Hydroxylation, and Halogenation Reactions of 3-Substituted Oxindoles 116
Nucleophilic Substitution Reactions of Functionalized 3-Substituted Oxindoles 122
Concluding Remarks 125
Acknowledgments 125
References 125

5. Abyssomicins: Isolation, Properties, and Synthesis 133

Vladimir Savic

Introduction 133
Secondary Metabolites from Actinomycetes 134
Isolation, Structure, Biosynthesis, and Biological Properties of Abyssomicins 135
Isolation and Structures 135
Biosynthesis 138
Biological Properties 140
Acknowledgment

224

References

225

8. Marine Resource: A Promising Future for Anticancer Drugs

Ajai Prakash Gupta, Pankaj Pandotra, Rajni Sharma, Manoj Kushwaha, and Suphla Gupta

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>229</td>
</tr>
<tr>
<td>Cancer</td>
<td>229</td>
</tr>
<tr>
<td>Marine Biodiversity</td>
<td>230</td>
</tr>
<tr>
<td>Phytomedicine: An Important Contribution of Terrestrial Plants</td>
<td>232</td>
</tr>
<tr>
<td>Marine Resource: A Wonder Reservoir</td>
<td>234</td>
</tr>
<tr>
<td>Marine Chemical Weapons for Human Welfare</td>
<td>235</td>
</tr>
<tr>
<td>Marine Macroorganisms</td>
<td>236</td>
</tr>
<tr>
<td>Sponges</td>
<td>236</td>
</tr>
<tr>
<td>Tunicates</td>
<td>236</td>
</tr>
<tr>
<td>Seaweeds</td>
<td>237</td>
</tr>
<tr>
<td>Marine Microorganism</td>
<td>238</td>
</tr>
<tr>
<td>Symbionts</td>
<td>239</td>
</tr>
<tr>
<td>Marine Pharmacology</td>
<td>240</td>
</tr>
<tr>
<td>Media-Dependent Synthesis</td>
<td>301</td>
</tr>
<tr>
<td>Future Strategies</td>
<td>308</td>
</tr>
<tr>
<td>Conclusion</td>
<td>312</td>
</tr>
<tr>
<td>References</td>
<td>314</td>
</tr>
</tbody>
</table>

9. 14β-Hydroxy pregnanes from Succulent Plants Belonging to Hoodia gordonii and Caralluma Genus: Extraction, Biological Activities, and Synthesis

Yatin J. Shukla, Ikhlas A. Khan, Philippe Geoffroy, and Michel Miesch

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>327</td>
</tr>
<tr>
<td>Isolation of 14β-Hydroxy pregnane Glycosides from Caralluma Species</td>
<td>328</td>
</tr>
<tr>
<td>Isolation of 14β-Hydroxy pregnane Glycosides from H. gordonii</td>
<td>332</td>
</tr>
<tr>
<td>Biological Activities</td>
<td>335</td>
</tr>
<tr>
<td>Caralluma Species</td>
<td>335</td>
</tr>
<tr>
<td>Hoodia gordonii</td>
<td>338</td>
</tr>
<tr>
<td>Synthetic Approaches to the Aglycones of 14β-Hydroxy pregnane Glycosides</td>
<td>341</td>
</tr>
<tr>
<td>Synthesis of Caraumbellogenin</td>
<td>345</td>
</tr>
<tr>
<td>Synthesis of Hoodigogenin A and P57</td>
<td>346</td>
</tr>
<tr>
<td>Synthesis of Hoodigogenin A</td>
<td>346</td>
</tr>
<tr>
<td>Synthesis of P57</td>
<td>347</td>
</tr>
<tr>
<td>Conclusion</td>
<td>354</td>
</tr>
<tr>
<td>References</td>
<td>355</td>
</tr>
</tbody>
</table>
10. Chemico-Biological Aspects of Plant Lectins with a Preference to Legume Lectins

Fatima Clement John, Khatija Tabbasum, and Chebrolu P. Rao

Introduction 360
Classification of Plant Lectins 360
Based on Domain Architecture 361
Based on Carbohydrate Specificity and 3D Structure 361
Based on Sequence Similarity 361
Based on Phylogeny 363
Isolation of Plant Lectins 363
General Methodology 363
Purification and Assay 363
Immobilized Lectins for the Separation of Glycoconjugates 364
Legume Lectins 364
General Features 365
The Jelly-Roll Motif 365
Metal Ion Binding 365
Carbohydrate-Binding Domain 366
Ligand Binding 367
Peptide Mimicry 368
Structure–Activity Relationship in Legume Lectins 368
Binding Specificity 370
Configurational Preference 370
Oligosaccharide Affinity 371
Synthetic Glycoconjugates and Interactions with Lectins 372
Aromatic-Imino-Glycoconjugates 372
Lactosylated Glycoclusters 374
Polymeric Glycoconjugates 374
Legere to Lectinomics 376
Mitogenic, Immunomodulatory, and Antiproliferating Activity 376
Tools of Segregation 376
Tools of Cytocharacterization 377
Design of Novel Lectins 377
Tangible Applications of Lectins 378
References 378

11. Lycopene: A Review of Chemical and Biological Activity Related to Beneficial Health Effects

Montaña Cámar, María de Cortes Sánchez-Mata, Virginia Fernández-Ruiz, Rosa María Cámar, Sadia Manzoor, and Jorge O. Caceres

Introduction 384
Lycopene: Chemistry, Metabolism, and Bioavailability 385
Sources of Lycopene 388
Lycopene Mechanisms of Action 391
Antioxidant Activity 391
Modulation of Lipid Metabolism 392
Antineoplastic Activity 394
Beneficial Health Effects of Lycopene 395
Hypercholesterolemia and CVD 396
Cancer 398
Skin Damage 401
Lycopene Analysis 402
Sampling and Sample Preparation 402
Extraction Procedure 403
Identification and Quantification 408
Conclusions and Future Prospects 416
Acknowledgments 417
References 418

12. Oleuropeic and Menthiafolic Acid Glucose Esters from Plants: Shared Structural Relationships and Biological Activities 427

Jason Q.D. Goodger and Ian E. Woodrow

Introduction 427
Oleuropeyl and Menthiafoloyl Glucose Esters 428
Biological Activities 440
Functional Roles in Plants 443
Biosynthesis 445
Concluding Remarks 448
Acknowledgement 448
References 449

13. Pharmacological Effects of Cordyceps and Its Bioactive Compounds 453

Jeevan K. Prasain

Introduction 453
Pharmacological Studies 454
Aphrodisiac Effects 455
Anticancer Effects 455
Glucose Homeostasis 456
Immunomodulatory Effects 457
Nephroprotective Effects 458
Active Components 458
Nucleosides 458
Polysaccharides 461
Steroids 462
Cordycepin Pharmacokinetics 463
Quality Control 464