

Table of Contents

Preface xx

Chapter 1 Microcontrollers for Embedded Systems

1.1 Embedded Systems 1

1.2 Microchip PIC
 1.2.1 PIC Architecture 2
 1.2.2 Programming the PIC
 PIC Programmers 3
 Development Boards 4

1.3 PIC Architecture
 1.3.1 Baseline PIC Family
 PIC10 devices 5
 PIC12 Devices 6

 1.3.2 Mid-Range Family
 PIC14 Devices 7
 PIC16 Devices 8

 1.3.3 High-Performance PICs and DSPs
 Digital Signal Processor 10
 Analog-to-Digital 11

Chapter 2 PIC18 Architecture

2.1 PIC18 Family Overview
 2.1.1 PIC18FXX2 Group 13
 2.1.2 PIC18FXX2 Device Group Overview 14

 2.1.3 PIC18F4X2 Block Diagram 15

 2.1.4 Central Processing Unit
 Status Register 17
 Program Counter Register 17
 Hardware Multiplier 18
 Interrupts 18

 2.1.5 Special CPU Features
 Watchdog Timer 19
 Wake-Up by Interrupt 20

 2.2 Memory Organization
 2.2.1 Program Memory 21

v
Table of Contents

2.2.2 18FXX2 Stack
 Stack Operations
 Fast Register Stack
 Instructions in Memory
2.2.3 Data Memory
2.2.4 Data EEPROM Memory
2.2.5 Indirect Addressing
2.3 PIC18FXX2 Oscillator
 2.3.1 Oscillator Options
 Crystal Oscillator and Ceramic Resonator
 RC Oscillator
 External Clock Input
 Phase Locked Loop Oscillator Mode
2.4 System Reset
 2.4.1 Reset Action
 Power-On Reset (POR)
 Power-Up Timer (PWRT)
 Oscillator Start-Up Timer (OST)
 PLL Lock Time-Out
 Brown-Out Reset (BOR)
 Time-Out Sequence
2.5 I/O Ports
 2.5.1 Port Registers
 2.5.2 Parallel Slave Port
2.6 Internal Modules
 2.6.1 PIC18FXX2 Modules

Chapter 3 Programming Tools and Software 37

3.1 Environment
 3.1.1 Embedded Systems
 3.1.2 High- and Low-Level Languages
 3.1.3 Language-Specific Software
3.2 Microchip's MPLAB
 3.2.1 MPLAB X
 3.2.2 Development Cycle
3.3 An Integrated Development Environment
 3.3.1 Installing MPLAB
 3.3.2 Creating the Project
 3.3.3 Setting the Project Build Options
 3.3.4 Adding a Source File
 3.3.5 Building the Project
 3.3.6 .hex File
 3.3.7 Quickbuild Option
3.4 MPLAB Simulators and Debuggers
 3.4.1 MPLAB SIM
 Using Breakpoints
 Watch Window
 Simulator Trace
 3.4.2 MPLAB Stimulus
 Stimulus Dialog
 3.4.3 MPLAB Hardware Debuggers
Table of Contents

3.4.4 An Improvised Debugger 56

3.5 Development Programmers 56
 3.5.1 Microchip PICkit 2 and PICkit 3 58
 3.5.2 Micropro USB PIC Programmer 60
 3.5.3 MPLAB ICD 2 and ICD 3 In-Circuit Debuggers/Programmers 60

3.6 Test Circuits and Development Boards 61
 3.6.1 Commercial Development Boards 61
 3.6.2 Circuit Prototype 63
 3.6.3 Breadboard 64
 Limitations of Breadboards 65
 Breadboarding Tools and Techniques 66
 3.6.4 Wire Wrapping 67
 3.6.5 Perfboards 67
 3.6.6 Printed Circuit Boards 68

Chapter 4 Assembly Language Program 71

4.1 Assembly Language Code 71
 4.1.1 A Coding Template 71
 Program Header 73
 Program Environment Directives 73
 Configuration Bits 73
 Error Message Level Control 74
 Variables and Constants 74
 Code Area and Interrupts 74
 4.1.2 Programming Style 74
 Source File Comments 75

4.2 Defining Data Elements 75
 4.2.1 equ Directive 76
 4.2.2 cblock Directive 76
 4.2.3 Access to Banked Memory 77

4.3 Naming Conventions 77
 4.3.1 Register and Bit Names 77

4.4 PIC 18Fxx2 Instruction Set 79
 4.4.1 Byte-Oriented Instructions 80
 4.4.2 Bit-Oriented Instructions 80
 4.4.3 Literal Instructions 80
 4.4.4 Control Instructions 80

Chapter 5 PIC18 Programming in C Language 85

5.1 C Compilers 85
 5.1.1 C versus Assembly Language 85
 5.1.2 MPLAB C18 86

5.2 MPLAB C18 Installation 86
 5.2.1 MPLAB Software Components 87
 5.2.2 Configuration Options 88
 5.2.3 System Requirements 89
 5.2.4 Execution Flow 90

5.3 C Compiler Project 91
 5.3.1 Creating the Project 91
Select Hardware Device 92
Select the Language Toolsuite 92
Create a New Project 93
Add Files to the Project 95
5.3.2 Selecting the Build Directory 96
5.4 A First Program in C 98
5.4.1 Source Code Analysis 99
main() Function 100
Local Functions 101

Chapter 6 C Language in an Embedded Environment 103
6.1 MPLAB C18 System 103
6.1.1 PIC18 Extended Mode 104
6.2 MPLAB C18 Libraries 104
6.2.1 Start-Up Routines 104
6.2.2 Online Help for C18 and Libraries 105
6.3 Processor-Independent Libraries 106
6.3.1 General Software Library 106
Character Classification Functions 107
Data Conversion Functions 107
Memory and String Manipulation Functions 108
Delay Functions 110
Reset Functions 111
Character Output Functions 112
6.4 Processor-Specific Libraries 115
6.4.1 Hardware Peripheral Library Functions 115
6.4.2 Software Peripherals Library Functions 116
6.4.3 Macros for Inline Assembly 116
6.4.4 Processor-Specific Header Files 117
6.5 Math Libraries 118
6.5.1 ANSI-IEEE 754 Binary Floating-Point Standard 118
Encodings 119
Rounding 119
6.5.2 Standard Math Library Functions 120
6.5.3 Floating-Point Math Sample Program 120
6.6 C18 Language Specifics 122
6.6.1 C18 Integer Data Types 122
6.6.2 C18 Floating-Point Data Types 122
6.6.3 Endianness 123
6.6.4 Storage Classes 123
6.6.5 Static Function Argument 123
6.6.6 Storage Qualifiers 123
far and near Qualifiers 123
rom and ram Qualifiers 124

Chapter 7 Programming Simple Input and Output 125
7.1 Port-Connected I/O 125
7.1.1 A Simple Circuit and Code 125
7.1.2 Circuit Schematics 125
7.1.3 Assembler Simple I/O Program 126
Table of Contents

7.1.4 Assembler Source Code Analysis 129
Command Monitoring Loop 129
Action on the LEDs 130
A Delay Routine 130

7.2 C Language Simple I/O Program 131
7.2.1 C Source Code Analysis 132
main() Function 133

7.3 Seven-Segment LED Programming 134
7.3.1 Computed Goto 135
7.3.2 Assembler Seven-Segment LED Program 136
Access Bank Operation 136
Port A for Digital Operation 137
DIP Switch Processing 138
Seven-Segment Code with Computed Goto 139
7.3.3 Assembler Table Lookup Sample Program 140

7.4 C Language Seven-Segment LED Programs 141
7.4.1 Code Selection by Switch Construct 142
7.4.2 Code Selection by Table Lookup 142

7.5 A Demonstration Board 143
7.6.1 Power Supply 145
Voltage Regulator 145

Chapter 8 Interrupts 147

8.1 Interrupt Mechanism 147

8.2 PIC18 Interrupt System 147
8.2.1 Hardware Sources 148
8.2.2 Interrupt Control and Status Registers 148
INTCON Registers 149
PIE Registers 151
PIR Registers 152
IPR Registers 152
8.2.3 Interrupt Priorities 154
High-Priority Interrupts 154
Low-Priority Interrupts 155
An Interrupt Interrupting Another One 155
8.2.4 Context Saving Operations 155
Context Saving during Low-Priority Interrupts 156

8.3 Port B Interrupts 157
8.3.1 Port B External Interrupt 158
8.3.2 INTO Interrupt Demo Program 158
cblock Directive 158
Vectoring the Interrupt 159
Initialization 160
Setup INTO 160
Program Foreground 161
Interrupt Service Routine 161
Switch Debouncing 162
Interrupt Action 162
8.3.3 Port B Line Change Interrupt 163
Reentrant Interrupts 164
Multiple External Interrupts 165
Chapter 9 Delays, Counters, and Timers 179

9.1 PIC18 Family Timers 179

9.2 Delay Timers 179
 9.2.1 Power-Up Timer (PWRT) 179
 9.2.2 Oscillator Start-Up Timer (OST) 180
 9.2.3 Phase Locked Loop (PLL) 180
 Power-Up Delay Summary 181
 9.2.4 Watchdog Timer 181
 Watchdog Timer Uses 181

9.3 Hardware Timer-Counters 182

9.4 Timer0 Module 182
 9.4.1 Timer0 Architecture 184
 16-bit Mode Operation 184
 Timer and Counter Modes 185
 Timer0 Interrupt 185
 External Clock Source 185
 Timer0 Prescaler 186
 9.4.2 Timer0 as a Delay Timer 186
 Long Delay Loops 187
 Delay Accuracy Issues 188
 Black-Ammerman Method 188
 Delays with 16-Bit Timer0 189
 9.4.3 Counter and Timer Programming 189
 Programming a Counter 190
 Timer0_as_Counter.asm Program 190
 A Timer/Counter Test Circuit 191
 Timer0_Delay.asm Program 191
 A Variable Time-Lapse Routine 193
 Timer0_VarDelay.asm Program 193
 Interrupt-Driven Timer 196

9.5 Other Timer Modules 199
 9.5.1 Timer1 Module 199
 Timer1 in Timer Mode 200
 Timer1 in Synchronized Counter Mode 201
 External Clock Input Timing in Synchronized Mode 201
 Timer1 Read and Write Operations 201
 16-bit Mode Timer1 Write 201
Chapter 10 Data EEPROM

10.1 EEPROM on the PIC18 Microcontrollers
 10.1.2 On-Board Data EEPROM

10.2 EEPROM Programming
 10.2.1 Reading EEPROM Data
 10.2.2 Writing EEPROM Data

10.3 Data EEPROM Programming in C Language
 10.3.1 EEPROM Library Functions
 10.3.2 Sample Code

10.4 EEPROM Demonstration Programs
 10.4.1 EEPROM_to_7Seg Program
 10.4.2 C_EEPROM_Demo Program

Chapter 11 Liquid Crystal Displays

11.1 LCD
 11.1.1 LCD Features and Architecture
 11.1.2 LCD Functions and Components
 Internal Registers
 Busy Flag
 Address Counter
11.3 The HD44780 Instruction Set 247
 11.3.1 Instruction Set Overview 247
 Clearing the Display 248
 Return Home 248
 Entry Mode Set 248
 Display and Cursor ON/OFF 248
 Cursor/Display Shift 248
 Function Set 248
 Set CGRAM Address 249
 Set DDRAM Address 249
 Read Busy Flag and Address Register 249
 Write data 249
 Read data 250
 11.3.2 18F452 8-Bit Data Mode Circuit 250
11.4 LCD Programming 251
 11.4.1 Defining Constants and Variables 252
 Constants 252
 11.4.2 Using MPLAB Data Directives 253
 Data Definition in Absolute Mode 253
 Relocatable Code 254
 Issues with Initialized Data 254
 11.4.3 LCD Initialization 255
 Reset Function 255
 Initialization Commands 256
 Function Preset Command 256
 Function Set Command 256
 Display Off 257
 Display and Cursor On 257
 Set Entry Mode 258
 Cursor and Display Shift 258
 Clear Display 258
 11.4.4 Auxiliary Operations 259
 Time Delay Routine 259
 Pulsing the E Line 260
 Reading the Busy Flag 261
 Bit Merging Operations 262
 11.4.5 Text Data Storage and Display 264
 Generating and Storing a Text String 265
 Data in Program Memory 265
 Displaying the Text String 266
 Sample Program LCD_18F_MsgFlag 268
Table of Contents

11.5 Data Compression Techniques 278
 11.5.1 4-Bit Data Transfer Mode 279
 11.5.2 Preserving Port Data 279
 11.5.3 Master/Slave Systems 280
 11.5.4 4-Bit LCD Interface Sample Programs 281

11.6 LCD Programming in C18 291
 11.6.1 Editing xlcd.h 292
 Defining the Interface 292
 Defining the Data Port and Tris Register 293
 11.6.2 Timing Routines 294
 11.6.3 XLCD Library Functions 295
 BusyXLCD 295
 OpenXLCD 296
 putrXLCD 296
 putsXLCD 296
 ReadAddr 296
 ReadDataXLCD 297
 SetDDRamAddr 297
 SetCGRamAddr 297
 WriteCmdXLCD 298
 WriteDataXLCD 298

11.7 LCD Application Development in C18 299
 11.7.1 Using the Project Wizard 299
 Main Program File 300

Chapter 12 Real-Time Clocks 303

12.1 Measuring Time 303
 12.1.1 Clock Signal Source 303
 32 kHz Crystal Circuit 304
 12.1.2 Programming the Timer1 Clock 305
 Setting Up Timer1 Hardware 305
 Coding the Interrupt Handler 306
 Sample Program RTC_18F_Timer1.asm 306

12.2 Real-Time Clock ICs 309
 12.2.1 NJU6355 310
 12.2.2 6355 Data Formatting 310
 12.2.3 Initialization and Clock Primitives 311
 Reading and Writing Clock Data 311
 Initialize RTC 314
 12.2.4 BCD Conversions 316

12.3 RTC Demonstration Circuit and Program 318
 12.3.1 RTC_F18_6355.asm Program 318
 Code Details 319
 Code Listing 319

12.4 Real-Time Clocks in C18 336
 12.4.1 Timer1-Based RTC in C18 336
Chapter 13 Analog Data and Devices

13.1 Operations on Computer Data 343
13.2 18F452 A/D Hardware 343
 13.2.1 A/D Module on the 18F452 344
 ADCON0 Register 345
 ADCON1 Register 347
 SLEEP Mode Operation 348
 13.2.2 A/D Module Sample Circuit and Program 349
 Initialize A/D Module 350
 A/D Conversion 351
 13.2.3 A2D_Pot2LCD Program 352
13.3 A/D Conversion in C18 365
 13.3.1 Conversion Primitives 365
 Busy ADC 365
 CloseADC 365
 ConvertADC 366
 OpenADC 366
 ReadADC 367
 SetChan ADC 367
 13.3.2 C_ADCConvert.c Program 368
 C_ADCConvert.c Code Listing 368
13.4 Interfacing with Analog Devices 371
 13.4.1 LM 34 Temperature Sensor 371
 13.4.2 LM135 Circuits 372
 Calibrating the Sensor 372
 13.4.3 C_ADC_LM35.c Program 373

Chapter 14 Operating Systems

14.1 Time-Critical Systems 377
 14.1.2 Multitasking in Real-Time 378
14.2 RTOS Scope 378
 14.2.1 Tasks, Priorities, and Deadlines 379
 14.2.2 Executing in Real-Time 381
14.3 RTOS Programming 381
 14.3.1 Foreground and Background Tasks 382
 Interrupts in Tasking 382
 14.3.2 Task Loops 383
 14.3.3 Clock-Tick Interrupt 383
 14.3.4 Interrupts in Preemptive Multitasking 383
14.4 Constructing the Scheduler 384
 14.4.1 Cyclic Scheduling 384
 14.4.2 Round-Robin Scheduling 385
 14.4.3 Task States and Prioritized Scheduling 385
14.5 A Small System Example 386
 14.5.1 Task Structure 386
 14.5.2 Semaphore 387
14.6 Sample OS Application 388
Appendix A MPLAB C18 Language Tutorial

A.1 In This Appendix
A.1.1 About Programming
A.1.2 Communicating with an Alien Intelligence
A.1.3 Flowcharting
A.1.4 C Language Rules
 Comments
 Program Header
 Programming Templates
A.2 Structure of a C Program
A.2.1 Sample Program C_LEDs_ON
 Identifiers
 Reserved Words
 main() Function
A.2.2 Sample Program C_LEDs_Flash
 Expressions and Statements
 Variables
 Scope and Lifetime of a Variable
 Constants
 Local Functions
A.2.3 Coding Style
A.3 C Language Data
A.3.1 Numeric Data
A.3.2 Alphanumeric Data
A.3.3 Arrays of Alphanumeric Data
A.3.4 Arrays of Numeric Data
A.4 Indirection
A.4.1 Storage of C Language Variables
A.4.2 Address of Operator
A.4.3 Indirection Operator
A.4.4 Pointers to Array Variables
A.4.5 Pointer Arithmetic
A.5 C Language Operators
A.5.1 Operator Action
A.5.2 Assignment Operator
A.5.3 Arithmetic Operators
 Remainder Operator
A.5.4 Concatenation
A.5.5 Increment and Decrement
A.5.6 Relational Operators
A.5.7 Logical Operators
A.5.8 Bitwise Operators
 AND Operator
 OR Operator
 XOR Operator
 NOT Operator
 Shift-Left and Shift-Right Operators
A.5.9 Compound Assignment Operators
A.5.10 Operator Hierarchy
 Associativity Rules
A.6 Directing Program Flow
A.6.1 Decisions Constructs
 if Construct
 Statement Blocks
 Nested if Construct
 else Construct
 Dangling else Case
 else-if Clause
 switch Construct
 Conditional Expressions

A.7 Loops and Program Flow Control
 A.7.1 Loops and Iterations
 A.7.2 Elements of a Program Loop
 A.7.3 for Loop
 Compound Statement in Loops
 while Loop
 do-while Loop

A.8 Breaking the Flow
 A.8.1 goto Statement
 A.8.2 break Statement
 A.8.3 continue Statement

A.9 Functions and Structured Programming
 A.9.1 Modular Construction
 A.9.2 Structure of a Function
 Function Prototype
 Function Definition
 Function Call
 Return Keyword
 Matching Arguments and Parameters

A.10 Visibility of Function Arguments
 A.10.1 Using External Variables
 A.10.2 Passing Data by Reference
 Pointers and Functions
 Passing Array Variables
 A.10.3 Function-Like Macros
 Macro Argument

A.11 Structures, Bit Fields, and Unions
 A.11.1 Structure Declaration
 Structure Type Declaration
 Structure Variable Declaration
 A.11.2 Accessing Structure Elements
 Initializing Structure Variables
 Manipulating a Bit Field
 Type Casting
 A.11.3 Unions
 A.11.4 Structures and Functions
 Pointers to Structures
 Pointer Member Operator
 Passing Structures to Functions
 A.11.5 Structures and Unions in MPLAB C18
Appendix B Debugging 18F Devices

B.1 Art of Debugging
 B.1.1 Preliminary Debugging
 B.1.2 Debugging the Logic

B.2 Software Debugging
 B.2.1 Debugger-Less Debugging
 B.2.2 Code Image Debugging
 B.2.3 MPLAB SIM Features
 Run Mode
 Step Mode
 Animate
 Mode Differences
 Build Configurations
 Setting Breakpoints
 B.2.4 PIC 18 Special Simulations
 Reset Conditions
 Sleep
 Watchdog Timer
 Special Registers
 B.2.5 PIC 18 Peripherals
 B.2.6 MPLAB SIM Controls
 B.2.7 Viewing Commands
 Dissassembly Listing
 File Registers
 Hardware Stack
 Locals
 Program Memory
 Special Function Registers
 Watch
 Watch Window in C Language
 B.2.8 Simulator and Tracing
 Setting Up a Trace
 Trace Menu
 B.2.9 Stimulus
 Stimulus Basics
 Using Stimulus
 Asynch Tab
 Message-Based Stimulus
 Pin/Register Actions Tab
 Advanced Pin/Register Tab
 Clock Stimulus Tab
 Register Injection Tab
 Register Trace Tab

B.3 Hardware Debugging
 B.3.1 Microchip Hardware Programmers/Debuggers
 MPLAB ICD2
 MPLAB ICD3
 MPLAB ICE 2000
 MPLAB ICE 4000
 MPLAB REAL ICE
 MPLAB PICkit 2 and PICkit 3
 B.3.2 Using Hardware Debuggers
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.3.3 MPLAB ICD2 Debugger Connectivity</td>
</tr>
<tr>
<td>Connection from Module to Target</td>
</tr>
<tr>
<td>Debug Mode Requirements</td>
</tr>
<tr>
<td>Debug Mode Preparation</td>
</tr>
<tr>
<td>Debug Ready State</td>
</tr>
<tr>
<td>Breadboard Debugging</td>
</tr>
<tr>
<td>B.4 MPLAB ICD 2 Tutorial</td>
</tr>
<tr>
<td>B.4.1 Circuit Hardware</td>
</tr>
<tr>
<td>B.4.2 LedFlash_Reloc Program</td>
</tr>
<tr>
<td>B.4.3 Relocatable Code</td>
</tr>
<tr>
<td>Header Files</td>
</tr>
<tr>
<td>Program Memory</td>
</tr>
<tr>
<td>Configuration Requirements</td>
</tr>
<tr>
<td>RAM Allocations</td>
</tr>
<tr>
<td>LedFlash_Reloc.asm Program</td>
</tr>
<tr>
<td>B.4.4 Debugging Session</td>
</tr>
</tbody>
</table>

Appendix C Building Your Own Circuit Boards
533

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Drawing the Circuit Diagram</td>
</tr>
<tr>
<td>C.2 Printing the PCB Diagram</td>
</tr>
<tr>
<td>C.3 Transferring the PCB Image</td>
</tr>
<tr>
<td>C.4 Etching the Board</td>
</tr>
<tr>
<td>C.5 Finishing the Board</td>
</tr>
<tr>
<td>C.6 Backside Image</td>
</tr>
</tbody>
</table>

Appendix D PIC18 Instruction Set
539

Appendix E Number Systems and Data Encoding
633

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1 Decimal and Binary Systems</td>
</tr>
<tr>
<td>E.1.1 Binary Number System</td>
</tr>
<tr>
<td>E.1.2 Radix or Base of a Number System</td>
</tr>
<tr>
<td>E.2 Decimal versus Binary Numbers</td>
</tr>
<tr>
<td>E.2.1 Hexadecimal and Octal</td>
</tr>
<tr>
<td>E.3 Character Representations</td>
</tr>
<tr>
<td>E.3.1 ASCII</td>
</tr>
<tr>
<td>E.3.2 EBCDIC and IBM</td>
</tr>
<tr>
<td>E.3.3 Unicode</td>
</tr>
<tr>
<td>E.4 Encoding of Integers</td>
</tr>
<tr>
<td>E.4.1 Word Size</td>
</tr>
<tr>
<td>E.4.2 Byte Ordering</td>
</tr>
<tr>
<td>E.4.3 Sign-Magnitude Representation</td>
</tr>
<tr>
<td>E.4.4 Radix Complement Representation</td>
</tr>
<tr>
<td>E.4.5 Simplification of Subtraction</td>
</tr>
<tr>
<td>E.5 Binary Encoding of Fractional Numbers</td>
</tr>
<tr>
<td>E.5.1 Fixed-Point Representations</td>
</tr>
<tr>
<td>E.5.2 Floating-Point Representations</td>
</tr>
</tbody>
</table>
Table of Contents

E.5.3 Standardized Floating-Point
- Page 649

E.5.4 Binary-Coded Decimals (BCD)
- Page 650

E.5.5 Floating-Point BCD
- Page 650

Appendix F Basic Electronics

F.1 Atom
- Page 654

F.2 Isotopes and Ions
- Page 654

F.3 Static Electricity
- Page 655

F.4 Electrical Charge
- Page 656
 - F.4.1 Voltage
 - Page 656
 - F.4.2 Current
 - Page 656
 - F.4.3 Power
 - Page 657
 - F.4.4 Ohm's Law
 - Page 657

F.5 Electrical Circuits
- Page 658
 - F.5.1 Types of Circuits
 - Page 658

F.6 Circuit Elements
- Page 660
 - F.6.1 Resistors
 - Page 661
 - F.6.2 Revisiting Ohm's Law
 - Page 661
 - F.6.3 Resistors in Series and Parallel
 - Page 662
 - F.6.4 Capacitors
 - Page 664
 - F.6.5 Capacitors in Series and in Parallel
 - Page 665
 - F.6.6 Inductors
 - Page 666
 - F.6.7 Transformers
 - Page 667

F.7 Semiconductors
- Page 667
 - F.7.1 Integrated Circuits
 - Page 668
 - F.7.2 Semiconductor Electronics
 - Page 668
 - F.7.3 P-Type and N-Type Silicon
 - Page 669
 - F.7.4 Diode
 - Page 669

Index

- Page 671