Element Recovery and Sustainability

Edited by

Andrew J. Hunt
Department of Chemistry, University of York, UK
Email: andrew.hunt@york.ac.uk
Contents

Chapter 1 **Elemental Sustainability and the Importance of Scarce Element Recovery**
Andrew J. Hunt, Thomas J. Farmer and James H. Clark

1.1 The Issue of Elemental Sustainability
1.2 What are Critical Elements?
1.3 Why is there a Growing Security of Supply Issue?
1.3.1 Trends in Elements
1.4 Current Uses of Critical Elements
1.4.1 Critical Elements in Catalysis
1.4.2 Growing Need for Greener Elemental Recovery
1.5 New Sources of Critical Elements
1.6 Could a Circular Economy Hold the Answer?
References

Chapter 2 **Integration of Traditional Methods for Elemental Recovery in a Zero-waste Recycling Flow Sheet**
Xuan Wang, Tom Van Gerven and Bart Blanpain

2.1 Introduction
2.2 Metal Production Processes
2.2.1 Basic Stages in Metal Production
2.2.2 Extractive Metallurgy
2.2.3 Important Flow Sheets
2.3 Metal Recovery From Metallurgical Waste
2.3.1 Introduction
2.3.2 Case Study: Metal Recovery from Copper Slag
2.4 Conclusions
References
Chapter 3 Ionometallurgy: Processing of Metals using Ionic Liquids 59
Andrew P. Abbott and Gero Frisch

3.1 Metal Extraction and Recovery 59
3.2 Speciation and Phase Control 61
3.3 Current Issues 62
3.4 Ionometallurgy: A Potential Solution 64
3.5 What is an Ionic Liquid? 65
 3.5.1 Properties of Ionic Liquids 65
3.6 Previous Studies in Ionometallurgy 67
 3.6.1 General Observations 67
 3.6.2 Systems Studied 67
3.7 Current Research and Future Direction 69
 3.7.1 Oxidising Metals Electrolytically 69
 3.7.2 Oxidising Metals Chemically 69
 3.7.3 Solubility 71
 3.7.4 Precipitating Agents 72
 3.7.5 Redox Potentials 73
3.8 Issues to be Addressed 74
 3.8.1 Material handling 74
 3.8.2 Material Recycling 75
 3.8.3 Fundamental Data 75
 3.8.4 Environmental Impact 75
3.9 Conclusions 76
References 76

Chapter 4 Biosorption of Elements 80
Pei Pei Gan and Sam Fong Yau Li

4.1 Science of Biosorption 80
 4.1.1 Mechanisms of Biosorption 80
 4.1.2 Modelling Biosorption for Evaluation of Sorption Performance 83
4.2 Biosorbent Materials 85
 4.2.1 Potential Candidates 85
 4.2.2 Living versus Dead Biomass 99
4.3 Metal Recovery and Post-treatment of Spent Biosorbent 101
4.4 Further Consideration of Practical Applications 102
 4.4.1 Availability of Reactors for Biosorption 102
 4.4.2 Immobilisation of Biomass 104
4.5 Current Challenges and Future Direction 105
4.6 Conclusions 107
Acknowledgement 107
References 107
Chapter 5 Hyperaccumulation by Plants

Christopher W. N. Anderson

5.1 Introduction 114

5.2 Hyperaccumulation of Metals 115

5.3 Reason for Hyperaccumulation 116

5.4 Natural vs. Induced Hyperaccumulation 117

5.5 Technological Application of Hyperaccumulation to Metal-rich Soil 119

5.5.1 Phytoremediation and Phytomining. What is the Difference? 119

5.5.2 Timeframe 119

5.6 Phytomining of Nickel and Gold 120

5.6.1 Phytomining of Nickel 121

5.6.2 Phytomining of Gold 122

5.7 Biomass Processing: Recovery of Metal from Harvested Plants – the Big Unknown 128

5.7.1 Green Technology Idea for the Future: Supercritical Fluid Extraction 129

5.8 Economic Case for Using Nickel and Gold Hyperaccumulator Plants 130

5.8.1 Sustainability of Hyperaccumulation with Time 132

5.9 Where Might Phytoextraction be Most Usefully Employed? 133

5.9.1 Phytoextraction as a Community Mining Initiative 133

5.10 Conclusion 136

References 136

Chapter 6 F-block Elements Recovery

Louise S. Natrajan and Madeleine H. Langford Paden

6.1 Introduction 140

6.2 The Lanthanide Series 140

6.2.1 Discovery and Mining 142

6.2.2 Rare Earth End Uses 146

6.2.3 Rare Earth Separation, Recovery and Recycling 151

6.3 The Actinide Series 160

6.3.1 End Uses and Applications 162

6.3.2 Spent Nuclear Fuel and Reprocessing 164

6.4 Summary and Future Outlook 176

Acknowledgements 177

References 178
Chapter 7 Anthropospheric Losses of Platinum Group Elements 185
N. T. Nassar

7.1 Overview 185
7.2 Methodology 186
7.3 Loss and Recovery Rates 188
 7.3.1 Mining, Comminution and Concentration, Smelting and Refining 188
 7.3.2 Autocatalysts 192
 7.3.3 Jewellery and Investment 195
 7.3.4 Industrial Applications 196
 7.3.5 Electrical and Electronics 197
 7.3.6 Other Uses 198
7.4 Results and Discussion 198
7.5 Conclusions 202
Acknowledgement 202
References 202

Chapter 8 WEEE Waste Recovery 207
Avtar S. Matharu

8.1 Introduction: EEE and WEEE 207
8.2 WEEE Urban Mine 208
8.3 Case Study: Liquid Crystal Displays 209
 8.3.1 Success of LCDs 209
 8.3.2 Demanufacturing and Resource Recovery 211
 8.3.3 Distribution and Quantification of Critical Metals in LCDs 213
8.4 Environmental Legislation: WEEE, RoHS, REACH, EuP, ERP 215
8.5 Summary and Future Outlook 216
References 217

Chapter 9 Mining Municipal Waste: Prospective for Elemental Recovery 220
J. Dodson and H. L. Parker

9.1 Introduction 220
 9.1.1 The Material Cycle and Material Flows 220
 9.1.2 End-of-life Waste 223
9.2 Elemental Stocks in Society 225
 9.2.1 Metal Stocks 225
 9.2.2 Landfill Stockpiles 228
<table>
<thead>
<tr>
<th>Contents</th>
<th>xvii</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 Source-separation and Recycling of Metals from EOL Waste</td>
<td>228</td>
</tr>
<tr>
<td>9.3.1 Current Recycling Rates</td>
<td>230</td>
</tr>
<tr>
<td>9.3.2 Technology</td>
<td>230</td>
</tr>
<tr>
<td>9.3.3 Improving Collection Rates</td>
<td>237</td>
</tr>
<tr>
<td>9.4 Excavation of Existing Landfill Sites 'Landfill Mining'</td>
<td>238</td>
</tr>
<tr>
<td>9.4.1 Potential Metal Recovery from Landfill Leachate</td>
<td>239</td>
</tr>
<tr>
<td>9.5 Use of Ash from Incineration Plants</td>
<td>240</td>
</tr>
<tr>
<td>9.5.1 Characterisation of and Metal Concentrations in MSWI Ash</td>
<td>243</td>
</tr>
<tr>
<td>9.5.2 Techniques for Treatment and Metal Extraction from MSWI Ash</td>
<td>243</td>
</tr>
<tr>
<td>9.5.3 Environmental Impact of MSWI</td>
<td>250</td>
</tr>
<tr>
<td>9.6 Urban Mining in Practice: Platinum and Palladium Recovery from Roadside Dust</td>
<td>251</td>
</tr>
<tr>
<td>9.6.1 Levels of Pt and Pd in Environmental Matrices</td>
<td>251</td>
</tr>
<tr>
<td>9.6.2 Novel Processing Techniques for the Recovery of Pt and Pd</td>
<td>253</td>
</tr>
<tr>
<td>9.7 Conclusions</td>
<td>254</td>
</tr>
<tr>
<td>References</td>
<td>254</td>
</tr>
</tbody>
</table>

Subject Index

258