Thiol-X Chemistries in Polymer and Materials Science

Edited by

Andrew B. Lowe
University of New South Wales, Sydney, Australia
Email: a.lowe@unsw.edu.au

Christopher N. Bowman
University of Colorado, USA
Email: Christopher.bowman@colorado.edu

RSC Publishing
Contents

Chapter 1 Thiol-ene and Thiol-yne Chemistry in Ideal Network Synthesis
Neil B. Cramer and Christopher N. Bowman

1.1 Introduction 1
1.2 Polymerization Mechanism and Kinetics 3
 1.2.1 Oxygen 5
 1.2.2 Initiation 6
 1.2.3 Termination 9
1.3 Functional Group Chemistry 9
 1.3.1 Thiol-yne 11
1.4 Network Formation 13
1.5 Polymerization Kinetics and Modeling 14
1.6 Volume Shrinkage and Shrinkage Stress 17
1.7 Material Properties 18
1.8 Applications 20
1.9 Odor 21
1.10 Shelf Life 22
1.11 Oxidative and Photo Stability 22
References 23

Chapter 2 End-group Functionalization of RAFT-prepared Polymers Using Thiol-X Chemistries
Andrew B. Lowe

2.1 Introduction to RAFT Polymerization 28
2.2 Thiol-ene Chemistry with Michael Acceptors 36
2.3 Thiol-yne Chemistry 49
2.4 Thiol-isocyanate Chemistry 49
2.5 Thiol-epoxide Chemistry 52
2.6 Thiol-halogen Chemistry 53
2.7 Thiol-thiol Coupling Chemistry 55
2.8 Summary and Outlook 55
References 55

Chapter 3 Thiol-X Chemistries for the Production of Degradable Polymers 59
Katie L. Poetz, Olivia Z. Durham and Devon A. Shipp

3.1 Introduction 59
3.2 Thiol-X Chemistries Applied to Degradable Polymer Synthesis 62
 3.2.1 Generalities 62
 3.2.2 Thiol-ene Radical Polymerizations 62
 3.2.3 Thiol-Michael Additions 66
3.3 Conclusions 71
References 72

Chapter 4 Thiol-Thiosulfonate Chemistry in Polymer Science: Simple Functionalization of Polymers via Disulfide Linkages 76
Peter J. Roth and Patrick Theato

4.1 Introduction 76
4.2 Reactivity and Synthesis of Functional Thiosulfonates 77
 4.2.1 Reactivity 77
 4.2.2 Synthesis of Functional Thiosulfonates 79
4.3 Polymeric Thiosulfonates 80
 4.3.1 Polymeric Leaving Group (R² = Polymer) 80
 4.3.2 Polymeric Functional Group (R¹ = Polymer) 80
 4.3.3 Polymeric Leaving Group and Polymeric Functional Group (R¹, R² = polymer) 82
4.4 Modification of RAFT polymers (R-SH = Polymer) 82
 4.4.1 Introducing Methyl Disulfide End Groups 82
 4.4.2 Functional Disulfide End Groups 83
 4.4.3 Simultaneous Use with Activated Esters 84
4.5 Self-Assembled Monolayers of Polymeric Methyl Disulfides Prepared by MMTS 86
4.6 Experimental Section 87
 4.6.1 Synthesis of Sodium Methanethiosulfonate (NaMTS) from Sodium Methanesulfinate 88
 4.6.2 Synthesis of S-But-3-ynyl Methanethiosulfonate 88
Chapter 5 Nucleophilic Thiol-alkene Michael Addition for the Functionalization of Polymers and for Bioconjugation
M W Jones and D M Haddleton

5.1 Introduction
5.2 Cysteine Conjugation
5.3 N-Substituted Maleimides Substrates
5.4 Vinyl Sulfone Substrates
5.5 Disulfide Bridging Reactions
5.6 Nucleophilic Thiol-ene “Click”
5.7 Thiol-ene Chemistry for Protein/Peptide Modification
5.8 Polymeric Acrylates for Peptide Conjugation
5.9 Radical Thiol-ene
5.10 Development of Novel Maleimide Derivatives for Cysteine Targeting
5.11 siRNA and Aptamer Conjugation
5.12 Antibody Drug Conjugates (ADCs)
5.13 Summary
References

Chapter 6 Thiol-ene/yne Chemistry for the Synthesis of Branched and Star-shaped Macromolecules
Abby R. Jennings and David Y. Son

6.1 Introduction
6.2 The Thiol-Michael Reaction
6.3 The Thiol-ene Reaction
6.4 The Thiol-yne Reaction
6.5 Sequential Thiol-ene/Thiol-yne Reactions
6.6 Conclusions
6.7 List of Abbreviations
References
Chapter 7 Dendritic Polymers from Thiol–Yne Reactions
Raphael Barbey and Sébastien Perrier

7.1 Introduction
7.2 Dendrimer Synthesis
7.3 Hyperbranched (Dendritic) Polymer Synthesis
 7.3.1 Dendritic Polymer from Small Molecule Monomers
 7.3.2 Dendritic Polymer from Macromonomers
 7.3.3 Functionalisation of Dendritic Polymers
 Post Thiol–Yne Reaction
7.4 Conclusions
Acknowledgments
References

Chapter 8 Thiol-X Reactions in Tissue Engineering
Daniel L. Alge and Kristi S. Anseth

8.1 Introduction
8.2 Important Considerations for Cell Encapsulation
8.3 Cytocompatible Thiol-X Chemistries
 8.3.1 Michael Addition
 8.3.2 Radical Mediated Thiol-Ene Addition
8.4 Protocol for Cellular Encapsulation
 8.4.1 Preparation of Stock Solutions
 8.4.2 Preparation of the Cell-precursor Solution
 8.4.3 Formation of the Cell-laden Hydrogel
 8.4.4 Post-encapsulation Characterization
8.5 Imparting Biofunctionality to Synthetic Hydrogels
 8.5.1 Creating Enzymatically Degradable Polymer Networks
 8.5.2 Mimicking Cell–ECM and Cell–Cell Interactions
 8.5.3 Growth Factor and Cytokine Functionalization
8.6 Future Directions and Opportunities in Tissue Engineering
Chapter 9 Thiolactones as Functional Handles for Polymer Synthesis and Modification
Pieter Espeel, Fabienne Goethals and Filip E. Du Prez

9.1 Introduction 195
9.2 Chemistry of Thiolactones and Derivatives 196
 9.2.1 Chemical Structure and Properties of Thiolactones 196
 9.2.2 Structural Features, Synthesis and Properties of Homocysteine-γ-thiolactone 198
 9.2.3 Assessment of the Dual Reactivity of Homocysteine-γ-thiolactone 198
 9.2.4 Synthetic Applications of Derivatives of Homocysteine-γ-thiolactone 199
9.3 Thiolactones as Functional Handles for Polymer Synthesis and Modification 201
 9.3.1 One-Pot Multistep Reactions Based on Thiolactones: Amine-Thiol-Ene Conjugation 201
 9.3.2 Double Modular Modification of Thiolactone-containing Polymers 205
9.4 Conclusion and Outlook 209
References 209

Chapter 10 Thiol-ene Radical Coupling: A Powerful Technique for the Synthesis of Polymer Precursors, Block Copolymers and Graft Copolymers
Bernard Boutevin, Remi Auvergne and Ghislain David

10.1 Introduction 217
10.2 Synthesis of Reactive Precursors by Thiol-ene Radical Coupling 218
 10.2.1 Monofunctional Precursors 218
 10.2.2 Telechelic Precursors 220
10.3 Thiol-ene Radical Coupling onto Vinyl-containing Polymers 226
10.4 Block Copolymers and Ionomers by Thiol-ene Radical Coupling 230
Chapter 11 Hybrids of Synthetic Polymers and Natural Building Blocks
Using Thio-click
Martina H. Stenzel

11.1 Hybrids of Polymers and Nature's Building Block 236

11.2 Glycopolymers 237
11.2.1 Thio-halogeno Reaction 237
11.2.2 Thio-para Fluoro Reaction 239
11.2.3 Thiol-ene Reaction 240
11.2.4 Thiol-yne Reaction 242

11.3 Polymer-peptide Conjugates 243
11.3.1 Thio-halogeno Reaction 243
11.3.2 Thiol-ene Reaction 244
11.3.3 Thiol-vinylsulfone Reaction 247
11.3.4 Thiol-maleimide Reaction 248
11.3.5 Thiol-pyridyl Disulfide (PDS) Reaction 248

11.4 Conjugates with Other Biopolymers 250
11.4.1 Polymer-protein Conjugates 250
11.4.2 Polymer-DNA Conjugates 252
11.4.3 Polymer-monoclonal Antibodies Conjugates 252

11.5 Conclusions 253
References 253

Chapter 12 Surface Engineering with Thiol-click Chemistry
Ryan M. Hensarling and Derek L. Patton

12.1 Overview of Thiol-click Surface Engineering 259

12.2 Monolayers and Other Ultrathin Films 261
12.3 Polymer Surfaces 267
12.4 Microporous Membranes 273
12.5 Nano- and Microparticle Surfaces 276
12.6 Biological Surfaces 279

12.7 Summary 281
References 281
Chapter 13 The Application of Thiol-Ene/Yne Radical Click Chemistry in Surface Modification and Functionalization
Xinmiao Liang, Aijin Shen and Zhimou Guo

13.1 Introduction 286
13.2 Modification and Functionalization of Solid Surfaces with Tailored Properties via Thiol Radical Click Chemistry 288
 13.2.1 Surface Modification Based on Thiol-Ene Click Reaction 288
 13.2.2 Surface Modification Based on Thiol-Yne Click Reaction 294
13.3 Synthesis of Chromatographic Stationary Phases Based on Radical-Mediated Thiol-Ene/Yne Click Reaction 296
 13.3.1 Preparation of Chiral (Ionic Exchange) Stationary Phases 297
 13.3.2 Preparation of Reversed-phase and Mixed-mode Stationary Phases 301
 13.3.3 Preparation of Hydrophilic Interaction Liquid Chromatography (HILIC) Stationary Phases 302
13.4 Conclusion 305
References 305

Subject Index 309