CONTENTS

PREFACE xi

CHAPTER 1 Building a Solid Foundation 1
1.1 Defining Engineering Fluid Mechanics 2
1.2 Describing Liquids and Gases 3
1.3 Idealizing Matter 5
1.4 Dimensions and Units 6
1.5 Carrying and Canceling Units 9
1.6 Applying the Ideal Gas Law (IGL) 13
1.7 The Wales-Woods Model 15
1.8 Checking for Dimensional Homogeneity (DH) 19
1.9 Summarizing Key Knowledge 22

CHAPTER 2 Fluid Properties 28
2.1 Defining the System 28
2.2 Characterizing Mass and Weight 30
2.3 Modeling Fluids as Constant Density 32
2.4 Finding Fluid Properties 34
2.5 Describing Viscous Effects 35
2.6 Applying the Viscosity Equation 39
2.7 Characterizing Viscosity 42
2.8 Characterizing Surface Tension 45
2.9 Predicting Boiling Using Vapor Pressure 50
2.10 Characterizing Thermal Energy in Flowing Gases 51
2.11 Summarizing Key Knowledge 52

CHAPTER 3 Fluid Statics 60
3.1 Describing Pressure 61
3.2 Calculating Pressure Changes Associated with Elevation Changes 65
3.3 Measuring Pressure 72
3.4 Predicting Forces on Plane Surfaces (Panels) 77
3.5 Calculating Forces on Curved Surfaces 83
3.6 Calculating Buoyant Forces 85
3.7 Predicting Stability of Immersed and Floating Bodies 88
3.8 Summarizing Key Knowledge 92

CHAPTER 4 The Bernoulli Equation and Pressure Variation 111
4.1 Describing Streamlines, Streaklines, and Pathlines 112
4.2 Characterizing Velocity of a Flowing Fluid 114
4.3 Describing Flow 117
4.4 Acceleration 123
4.5 Applying Euler’s Equation to Understand Pressure Variation 127
4.6 Applying the Bernoulli Equation along a Streamline 132
4.7 Measuring Velocity and Pressure 139
4.8 Characterizing Rotational Motion of a Flowing Fluid 142
4.9 The Bernoulli Equation for Irrotational Flow 146
4.10 Describing the Pressure Field for Flow over a Circular Cylinder 147
4.11 Calculating the Pressure Field for a Rotating Flow 149
4.12 Summarizing Key Knowledge 152

CHAPTER 5 Control Volume Approach and Continuity Equation 169
5.1 Characterizing the Rate of Flow 170
5.2 The Control Volume Approach 176
5.3 Continuity Equation (Theory) 182
5.4 Continuity Equation (Application) 184
5.5 Predicting Cavitation 191
5.6 Summarizing Key Knowledge 194

CHAPTER 6 Momentum Equation 208
6.1 Understanding Newton’s Second Law of Motion 209
6.2 The Linear Momentum Equation: Theory 213
6.3 Linear Momentum Equation: Application 216
6.4 The Linear Momentum Equation for a Stationary Control Volume 218
6.5 Examples of the Linear Momentum Equation (Moving Objects) 228
6.6 The Angular Momentum Equation 233
6.7 Summarizing Key Knowledge 236
CHAPTER 7 The Energy Equation 252
 7.1 Energy Concepts 253
 7.2 Conservation of Energy 255
 7.3 The Energy Equation 265
 7.4 The Power Equation 267
 7.5 Mechanical Efficiency 270
 7.6 Contrasting the Bernoulli Equation and the Energy Equation 273
 7.7 Transitions 277
 7.8 Hydraulic and Energy Grade Lines 279
 7.9 Summarizing Key Knowledge 283

CHAPTER 8 Dimensional Analysis and Similitude 292
 8.1 Need for Dimensional Analysis 292
 8.2 Buckingham II Theorem 294
 8.3 Dimensional Analysis 295
 8.4 Common π-Groups 299
 8.5 Similitude 302
 8.6 Model Studies for Flows without Free-Surface Effects 305
 8.7 Model-Prototype Performance 308
 8.8 Approximate Similitude at High Reynolds Numbers 309
 8.9 Free-Surface Model Studies 312
 8.10 Summarizing Key Knowledge 315

CHAPTER 9 Predicting Shear Force 324
 9.1 Uniform Laminar Flow 325
 9.2 Qualitative Description of the Boundary Layer 330
 9.3 Laminar Boundary Layer 331
 9.4 Boundary Layer Transition 335
 9.5 Turbulent Boundary Layer 336
 9.6 Pressure Gradient Effects of Boundary Layers 347
 9.7 Summarizing Key Knowledge 349

CHAPTER 10 Flow in Conduits 359
 10.1 Classifying Flow 360
 10.2 Specifying Pipe Sizes 363
 10.3 Pipe Head Loss 363
 10.4 Stress Distributions in Pipe Flow 365
 10.5 Laminar Flow in a Round Tube 367
 10.6 Turbulent Flow and the Moody Diagram 371
 10.7 Strategy for Solving Problems 375
 10.8 Combined Head Loss 379
 10.9 Nonround Conduits 384
 10.10 Pumps and Systems of Pipes 385
 10.11 Key Knowledge 391

CHAPTER 11 Drag and Lift 406
 11.1 Relating Lift and Drag to Stress Distributions 407
 11.2 Calculating Drag Force 408
 11.3 Drag of Axisymmetric and 3-D Bodies 413
 11.4 Terminal Velocity 416
 11.5 Vortex Shedding 419
 11.6 Reducing Drag by Streamlining 420
 11.7 Drag in Compressible Flow 421
 11.8 Theory of Lift 422
 11.9 Lift and Drag on Airfoils 426
 11.10 Lift and Drag on Road Vehicles 432
 11.11 Summarizing Key Knowledge 435

CHAPTER 12 Compressible Flow 445
 12.1 Wave Propagation in Compressible Fluids 445
 12.2 Mach Number Relationships 451
 12.3 Normal Shock Waves 455
 12.4 Isentropic Compressible Flow Through a Duct with Varying Area 460
 12.5 Summarizing Key Knowledge 471

CHAPTER 13 Flow Measurements 478
 13.1 Measuring Velocity and Pressure 478
 13.2 Measuring Flow Rate (Discharge) 486
 13.3 Measurement in Compressible Flow 501
 13.4 Accuracy of Measurements 505
 13.5 Summarizing Key Knowledge 506

CHAPTER 14 Turbomachinery 517
 14.1 Propellers 518
 14.2 Axial-Flow Pumps 523
 14.3 Radial-Flow Machines 527
 14.4 Specific Speed 531
 14.5 Suction Limitations of Pumps 532
 14.6 Viscous Effects 534
 14.7 Centrifugal Compressors 535
 14.8 Turbines 538
 14.9 Summarizing Key Knowledge 547

CHAPTER 15 Flow in Open Channels 554
 15.1 Description of Open-Channel Flow 555
 15.2 Energy Equation for Steady Open-Channel Flow 557
 15.3 Steady Uniform Flow 558
 15.4 Steady Nonuniform Flow 567
 15.5 Rapidly Varied Flow 567
 15.6 Hydraulic Jump 577
15.7 Gradually Varied Flow 582
15.8 Summarizing Key Knowledge 590

CHAPTER 16 Modeling of Fluid Dynamics Problems 598
16.1 Models in Fluid Mechanics 599
16.2 Foundations for Learning Partial Differential Equations (PDEs) 603
16.3 The Continuity Equation 612
16.4 The Navier-Stokes Equation 619
16.5 Computational Fluid Dynamics (CFD) 623
16.6 Examples of CFD 628
16.7 A Path for Moving Forward 631
16.8 Summarizing Key Knowledge 632

Appendix 639
Answers 651
Index 661