Approximation and Modeling with B-Splines

Klaus Höllig
Universität Stuttgart
Stuttgart, Germany

Jörg Hörner
Universität Stuttgart
Stuttgart, Germany

siam.
Society for Industrial and Applied Mathematics
Philadelphia
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction</td>
<td>ix</td>
</tr>
<tr>
<td>Notation and Symbols</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Polynomials</td>
<td></td>
</tr>
<tr>
<td>1.1 Monomial Form</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Taylor Approximation</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Interpolation</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Bernstein Polynomials</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Properties of Bernstein Polynomials</td>
<td>11</td>
</tr>
<tr>
<td>1.6 Hermite Interpolant</td>
<td>14</td>
</tr>
<tr>
<td>1.7 Approximation of Continuous Functions</td>
<td>16</td>
</tr>
<tr>
<td>2 Bézier Curves</td>
<td></td>
</tr>
<tr>
<td>2.1 Control Polygon</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Properties of Bézier Curves</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Algorithm of de Casteljau</td>
<td>25</td>
</tr>
<tr>
<td>2.4 Differentiation</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Curvature</td>
<td>29</td>
</tr>
<tr>
<td>2.6 Subdivision</td>
<td>31</td>
</tr>
<tr>
<td>2.7 Geometric Hermite Interpolation</td>
<td>33</td>
</tr>
<tr>
<td>3 Rational Bézier Curves</td>
<td></td>
</tr>
<tr>
<td>3.1 Control Polygon and Weights</td>
<td>37</td>
</tr>
<tr>
<td>3.2 Basic Properties</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Algorithms</td>
<td>42</td>
</tr>
<tr>
<td>3.4 Conic Sections</td>
<td>45</td>
</tr>
<tr>
<td>4 B-Splines</td>
<td></td>
</tr>
<tr>
<td>4.1 Recurrence Relation</td>
<td>51</td>
</tr>
<tr>
<td>4.2 Differentiation</td>
<td>55</td>
</tr>
<tr>
<td>4.3 Representation of Polynomials</td>
<td>59</td>
</tr>
<tr>
<td>4.4 Splines</td>
<td>61</td>
</tr>
<tr>
<td>4.5 Evaluation and Differentiation</td>
<td>68</td>
</tr>
<tr>
<td>4.6 Periodic Splines</td>
<td>73</td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>5 Approximation</td>
<td></td>
</tr>
<tr>
<td>5.1 Schoenberg's Scheme</td>
<td>77</td>
</tr>
<tr>
<td>5.2 Quasi-Interpolation</td>
<td>81</td>
</tr>
<tr>
<td>5.3 Accuracy of Quasi-Interpolation</td>
<td>85</td>
</tr>
<tr>
<td>5.4 Stability</td>
<td>88</td>
</tr>
<tr>
<td>5.5 Interpolation</td>
<td>90</td>
</tr>
<tr>
<td>5.6 Smoothing</td>
<td>97</td>
</tr>
<tr>
<td>6 Spline Curves</td>
<td></td>
</tr>
<tr>
<td>6.1 Control Polygon</td>
<td>105</td>
</tr>
<tr>
<td>6.2 Basic Properties</td>
<td>110</td>
</tr>
<tr>
<td>6.3 Refinement</td>
<td>115</td>
</tr>
<tr>
<td>6.4 Algorithms</td>
<td>125</td>
</tr>
<tr>
<td>6.5 Interpolation</td>
<td>130</td>
</tr>
<tr>
<td>7 Multivariate Splines</td>
<td></td>
</tr>
<tr>
<td>7.1 Polynomials</td>
<td>133</td>
</tr>
<tr>
<td>7.2 Polynomial Approximation</td>
<td>136</td>
</tr>
<tr>
<td>7.3 Splines</td>
<td>138</td>
</tr>
<tr>
<td>7.4 Algorithms</td>
<td>142</td>
</tr>
<tr>
<td>7.5 Approximation Methods</td>
<td>145</td>
</tr>
<tr>
<td>7.6 Hierarchical Bases</td>
<td>150</td>
</tr>
<tr>
<td>8 Surfaces and Solids</td>
<td></td>
</tr>
<tr>
<td>8.1 Bézier Surfaces</td>
<td>155</td>
</tr>
<tr>
<td>8.2 Spline Surfaces</td>
<td>160</td>
</tr>
<tr>
<td>8.3 Subdivision Surfaces</td>
<td>164</td>
</tr>
<tr>
<td>8.4 Blending</td>
<td>166</td>
</tr>
<tr>
<td>8.5 Solids</td>
<td>169</td>
</tr>
<tr>
<td>9 Finite Elements</td>
<td></td>
</tr>
<tr>
<td>9.1 Ritz–Galerkin Approximation</td>
<td>173</td>
</tr>
<tr>
<td>9.2 Weighted B-Splines</td>
<td>177</td>
</tr>
<tr>
<td>9.3 Isogeometric Elements</td>
<td>180</td>
</tr>
<tr>
<td>9.4 Implementation</td>
<td>183</td>
</tr>
<tr>
<td>9.5 Applications</td>
<td>187</td>
</tr>
<tr>
<td>Notes and Comments</td>
<td>193</td>
</tr>
<tr>
<td>Appendix</td>
<td>197</td>
</tr>
<tr>
<td>Bibliography</td>
<td>205</td>
</tr>
<tr>
<td>Index</td>
<td>213</td>
</tr>
</tbody>
</table>