SURFACE PHYSICS
Theoretical Models and Experimental Methods

M. V. Mamonova, V. V. Prudnikov and I. A. Prudnikova
Contents

Preface vi

1. THERMODYNAMICS OF SURFACE PHENOMENA 1

1.1. Surface tension and surface stress 2
 1.1.1. The surfaces of liquids 2
 1.1.2. The surfaces of solids 5
 1.1.3. The anisotropy of the surface tension of solids 8

1.2. The equilibrium shape of crystals. The Gibbs–Curie principle and Wulff theorem 12

1.3. The role of surface tension in the formation of a new phase. Nuclei 17

1.4. Gibbs equation for adsorption of solids. Surface-active substances 20

1.5. Surface phase transitions 22
 1.5.1. Long-range order–disorder transition 22
 1.5.2. Phase transitions associated with the reconstruction of the surface 29
 1.5.3. Dislocation mechanism of melting of two-dimensional structures 33
 1.5.4. Phase transition of the smooth-textured surface type 37

2. EXPERIMENTAL METHODS OF STUDY OF SURFACE PROPERTIES OF SOLIDS 41

2.1. Methods for studying the atomic structure 41
 2.1.2. Diffraction of fast electrons 47
 2.1.3. X-ray diffraction 47
 2.1.4. The scattering of neutrons 49
 2.1.5. The scattering of ions and neutral atoms 50
 2.1.6. Methods of electron spectroscopy 55
 2.1.7. The methods of field ion and electron microscopy. Scanning tunneling microscopy 59

2.2. Methods of investigating electronic properties 68
 2.2.1. Methods of electron spectroscopy 68
 2.2.2. Measurements of work function and surface ionization 69
 2.2.3. Methods of research surface of the magnetic properties: diffraction of slow spin-polarized electrons 71

2.3. Methods for studying the dynamics of the lattice, diffusion and film growth mechanisms 72
2.3.1. The method of IR spectroscopy 73
2.3.2. Methods of electron spectroscopy: the method of characteristic electron energy loss and the method of Auger spectroscopy 75
2.3.3. The methods of field ion and electron microscopy 79
2.4. Methods for measuring the thermodynamic characteristics of adsorbed films 79
2.4.1. Measurements of adsorption energy 79
2.4.2. Measurements of the heat capacity of adsorbed films 81

3. LOCALIZED STATES AND SURFACE ELEMENTARY EXCITATIONS 83
Introduction 83
3.1. Electronic surface states 83
3.2. Surface plasmons 89
3.2.1. Three-dimensional plasma waves and plasmons 90
3.2.2. Surface plasmons 97
3.3. Surface phonons and polaritons 100
3.3.1. Surface phonons 100
3.3.2. Bulk and surface polaritons 106
3.4. Surface magnons 111

4. SURFACE PROPERTIES OF SOLIDS AND METHODS FOR DESCRIBING THEM 116
Introduction 116
4.1. Main stages and directions of development of the theory of metal surfaces 117
4.2. The original equations of the density functional method for the study of the surface properties of metals 121
4.2.1. Density functional theory in the Hohenberg–Kohn formulation 121
4.2.2. The Hohenberg-Kohn variational principle 123
4.2.3. Self-consistent Kohn–Sham equations 124
4.2.4. Method of test functions. Thomas–Fermi approximation 128
4.3. Application of the density functional method (DFM) for calculation of the work function of the electron from the metal surface 132
4.4. The phenomenon of adhesion and ways of describing it 135
4.5. Adsorption on metal surfaces 137
4.5.1. The model of a homogeneous background for the substrate and the adsorbate 138
4.5.2. The model of a homogeneous background for the substrate 139
4.5.3. Lattice model of the substrate 142
4.6. Conclusions 145
7.6. Description of the method of calculation of the adhesion properties of diamond-like coatings
220
7.7. Methods and tools for measuring the adhesion of thin films
227
 7.7.1. Application of the indentation method for determining the adhesion strength of coatings
 227
 7.7.2. Contact potential difference method for determining the condition of the modified surface
 230
8. FRICTION OF SURFACES OF SOLIDS WITH NO LUBRICATION (DRY FRICTION) 240
8.1. Types of friction and dry friction laws. Wear 241
8.2. The principles of choosing optimal pairs of materials for non-lubricated moving friction sections 247
8.3. The method and calculation of the adhesion component of friction force of metals under dry friction conditions 252
8.4. The method and calculation of the friction characteristics of metals with solid lubricant materials, oxide and diamond-like wear-resistant coatings 263
8.5. Application of methods for calculating the adhesion and tribological properties to select the optimum friction pairs 270
9. THEORETICAL MODELS AND METHODS OF DESCRIPTION OF ADSORPTION OF METAL ATOMS ON METALLIC SURFACES 278
 Introduction. Understanding the adsorption process 278
 9.1. A multiparameter model of non-activated adsorption of atoms of alkali metals on metal surfaces 280
 9.1.1. The methodology and results of calculation of the energy characteristics of adsorption 281
 9.1.2. The methodology and results of calculation of the electron work function electrons from the metal surface modified by the adsorbate 294
 9.2. The model of activated adsorption of metal atoms on metallic surfaces 300
 9.2.1. The basic equations. Methods of calculating the energy adsorption 301
 9.2.2. Description of surface binary solutions 305
 9.2.3. Analysis of the results of calculating adsorption energy 307
 9.3. Effect of adsorption of metal atoms on the work function of the electron from metal surfaces 313
 9.3.1. The basic equations. Methods of calculating the work function 314
 9.3.2. Analysis of the results of calculation of the work function 316