Contents

Preface to the Fourth Edition vii
Preface to the First Edition ix

1. Microprocessor—A Physical System 1
2. The Microprocessor System 5
 2.1 Central Processing Unit (CPU) 5
 2.2 Arithmetic-Logic Section 6
 2.3 Accumulator 6
 2.4 Status Registers 7
 2.5 ALU 7
 2.6 General Purpose Registers 8
 2.7 Control Registers 8
 2.8 Program Counter (PC) 8
 2.9 Stack Pointer (SP) 8
 2.10 Index Register (IX) 9
 2.11 Instruction Register (IR) and Decoder 9
 2.12 Timing and Control Unit 9
 2.13 The Clock 10
 2.14 Reset 10
 2.15 Interrupt 10
 2.16 Hold 10
 2.17 READ and WRITE 11
 2.18 IOR and MR 11
 2.19 Address Latch Enable 11
3. The 8085A Microprocessor 12
 3.1 Architecture and Organisation of 8085A 12
 3.2 The ALU 14
 3.3 Registers 14
 3.4 Timing and Control Unit 15
 3.5 Pin Configuration of 8085A 17
 3.6 Interface 18
4. INTEL 8085 Assembly Language Programming 20
 4.1 Instruction Set for 8085/8085A 22
 4.2 Data Movement Instructions 23
 4.3 PUSH and POP 25
 4.4 Increment and Decrement Instructions 26
 4.5 Rotate and Shift Instructions 26
 4.6 Set, Compliment and Decimal Adjustment Instructions 28
 4.7 Add, Subtract and Compare Instructions 29
 4.8 AND, OR EXCLUSIVE-OR Instructions 30
 4.9 JUMP, CALL and RESTART Instructions 31
 4.10 CONDITIONAL JUMP, CALL and RETURN 31
 4.11 Loops in Programs 32
 4.12 Uses of Subroutines 33
 4.13 Delay Subroutine 38
 4.14 Instruction Modes 43
 4.15 Instruction Bytes 43

5. Memories 45
 5.1 Semiconductor Memories 45
 5.2 Non-volatile RAM 46
 5.3 Pin Configuration of RAM, EPROM and EEPROM 47
 5.4 Dynamic RAM 48
 5.5 Memory Map 49

6. Interfacing the Microprocessors 50
 6.1 Speed 50
 6.2 Level 50
 6.3 Data Form 51
 6.4 Control Bus Function 51
 6.5 Bus-Demultiplexing 54
 6.6 Decoder and Address Decoding 54
 6.7 Mapping 58
 6.8 Timing Parameters 60
 6.9 READ Operation 60
 6.10 WRITE Operation 61
 6.11 WAIT State 63
 6.12 HOLD State 64
 6.13 HALT State 65
 6.14 Interrupt States 65
7. **Input-Output Devices**

7.1 **I/O Ports** 66

7.1.1 Mode-1 (Hand-shake input port) P as input port 68
7.1.2 Hand shake input port (Mode 1) PB as input port 69
7.1.3 Hand shaking mode (Mode 1), Ph as output port 70
7.1.4 Hand shaking mode (Mode 1) PB as output port 71
7.1.5 Mode 2: Stroke bi-direction bi-directional but input/output 71
7.1.6 Control word format for Mode 1 operation, PA and PB acting as input/output port 72
7.1.7 Control word format for 8255 in Mode 2 72
7.1.8 Single port Set/Reset (BSR) Mode 73

7.2 **Key Board and Display** 75

7.3 **Seven Segment Display and Key Board Interface** 76

7.4 **D/A Converter** 80

7.4.1 DAC 0800 80
7.4.2 DAC0808 81
7.4.3 Digital voice communication 81

7.5 **A/D Converter** 82

7.5.1 ADC 0809 83
7.5.2 Converter characteristics 85

7.6 **Standard Peripherals** 86

8. **Serial Interface Techniques** 88

8.1 **Introduction** 88

8.2 **Protocols for Synchronous Serial Communication** 88

8.3 IBM’s Synchronous Data Link Control (SDLC) 88

8.3.1 Bit-Format 89
8.3.2 Non-return to zero-format 89
8.3.3 Phase encoding format 89
8.3.4 Double frequency format 90
8.3.5 Manchester coding format 90
8.3.6 Pulse width Modulation format 90
8.3.7 Kansas city standard 90
8.3.8 Serial communication standards 91

8.4 **RS-232C** 91

8.5 Universal Synchronous Asynchronous Receiver Transmitter (USART) 92

8.6 **Telephone Lines** 95
8.7 Teletypes 96
8.8 Audio Cassette Tapes 97
8.9 Disc systems 97
8.10 Floppy Disc 97
8.11 Video Monitors 98

9. Controlling and Peripheral Devices 99
9.1 Timer/Counter 99
 9.1.1 Pin configuration of timer/counter Intel 8253 99
9.2 Interrupt Controllers 103
 9.2.1 Master-slave configuration of 8259 106
9.3 DMA Controller 8237 107
 9.3.1 Command register format for 8237 A 109
 9.3.2 DMA controller 8257 111
9.4 Single Step Logic 114

10. Some Useful I/O Devices 115
10.1 Introduction 115
10.2 Zero Crossing Detector (ZCD) 115
10.3 Peak Detector 116
10.4 Opto-Coupler 116
10.5 Relay 117
10.6 Parallel Communication Bus Standard 118
10.7 General Purpose Interface Bus (GPIB) 118
10.8 Multitalker-Listener 119
10.9 Printer 121
10.10 Sixteen Channel Multiplexer (1H6116) 121

11. Programming a Microprocessor 125
11.1 Writing a Program 125
11.2 Display Techniques for INTEL 8279 126
11.3 Program Examples 127
11.4 Developing Subprogram 135
11.5 Space and Speed 137
11.6 Data Structure 138
11.7 System Programming 138
11.8 Some More Program Development 138
11.9 Use of Timer/Counter in Different Modes 164
 11.9.1 Mode 0 interruption terminal count 164
11.9.2 Mode 1 Programmable one shot 166
11.9.3 Mode 2 rate generator 166
11.9.4 Mode 3 square wave generator 167
11.9.5 Mode 4 software triggered strobe 168
11.9.6 Mode 5 hardware triggered strobe 168

12. Microprocessor: An overview

12.1 Types of Microprocessors 170
12.2 Variety of Microprocessor 171
12.3 Special Feature 171
12.4 Instruction Set 172
12.5 Addressing Modes 173
12.6 Writing Programs 173
12.7 General Purpose Microprocessors 175
 12.7.1 Zilog Z-80 175
 12.7.2 Software examples with z-80 based microprocessor 177
12.8 Motorola MC 6809 179
12.9 MOS Tech 6502 180
12.10 Bit Slice Processors 180
12.11 Zilog Z-8000 Family 182
12.12 Motorola MC 68000 Family 182
12.13 Texas Instruments TMS 9900 Family 182
12.14 32-Bit Processors 183
12.15 Zilog Z-80000 183

13. INTEL 8086

13.1 INTEL 8086: iAPZ86 Family 184
13.2 Architecture and Organisation of 8086 184
13.3 Execution Unit (EU) 185
13.4 Bus Interface Unit (BIU) 186
13.5 Register Structure 186
 13.5.1 General registers 186
 13.5.2 Pointer register and index register 187
 13.5.3 Segment registers 188
 13.5.3 Control registers 188
13.6 Memory Addressing 189
 13.6.1 Physical address generation 190
13.7 Dynamically Relocatable Code 191
13.8 Dedicated and Reserved Memory Location 192
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9</td>
<td>Pin Configuration of INTEL 8086</td>
</tr>
<tr>
<td>13.9.1</td>
<td>Minimum and maximum modes of operation</td>
</tr>
<tr>
<td>13.9.2</td>
<td>Pin configuration of intel 8086 in minimum mode</td>
</tr>
<tr>
<td>13.9.3</td>
<td>Pin configuration of intel 8086 in minimum mode</td>
</tr>
<tr>
<td>13.9.4</td>
<td>Memory interface of intel 8086 in minimum mode configuration</td>
</tr>
<tr>
<td>13.9.5</td>
<td>Memory interface of intel 8086 in maximum mode configuration</td>
</tr>
<tr>
<td>13.9.6</td>
<td>Multiprogramming and multiprocessing</td>
</tr>
<tr>
<td>13.9.7</td>
<td>Interrupt structure of intel 8086</td>
</tr>
<tr>
<td>13.9.8</td>
<td>Interrupt interface in minimum mode configuration</td>
</tr>
<tr>
<td>13.9.9</td>
<td>Interrupt interface in maximum mode configuration</td>
</tr>
<tr>
<td>13.10</td>
<td>Addressing Modes</td>
</tr>
<tr>
<td>13.11</td>
<td>Instruction Set</td>
</tr>
<tr>
<td>13.12</td>
<td>Arithmetic Instruction</td>
</tr>
<tr>
<td>13.13</td>
<td>Bit Manipulation Instruction</td>
</tr>
<tr>
<td>13.14</td>
<td>Processor Control Instruction</td>
</tr>
<tr>
<td>13.15</td>
<td>Program Examples</td>
</tr>
<tr>
<td>13.16</td>
<td>INTEL 8088</td>
</tr>
<tr>
<td>13.16.1</td>
<td>Different modes of operation of 8088</td>
</tr>
<tr>
<td>13.16.2</td>
<td>Comparison between 8086 and 8088</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>14.2</td>
<td>Voltage Measurement</td>
</tr>
<tr>
<td>14.3</td>
<td>Current Measurement</td>
</tr>
<tr>
<td>14.4</td>
<td>Frequency Measurement</td>
</tr>
<tr>
<td>14.5</td>
<td>Speed Measurement</td>
</tr>
<tr>
<td>14.6</td>
<td>Temperature Monitoring</td>
</tr>
<tr>
<td>14.7</td>
<td>Over Current Protection</td>
</tr>
<tr>
<td>14.8</td>
<td>Speed Control of DC Series Motor</td>
</tr>
<tr>
<td>14.9</td>
<td>Monitoring of Power Factor, Horse Power, Efficiency Slip and Speed of a Three Phase Induction Motor</td>
</tr>
<tr>
<td>15.</td>
<td>Single Chip Microcomputers (Microcontroller)</td>
</tr>
<tr>
<td>15.1</td>
<td>Intel 8031</td>
</tr>
<tr>
<td>15.2</td>
<td>Description of the 8031 Chip</td>
</tr>
<tr>
<td>15.3</td>
<td>Pin Configuration of the 8031 and Intel 51-Family</td>
</tr>
<tr>
<td>15.4</td>
<td>Organisation of the 8031</td>
</tr>
<tr>
<td>15.5</td>
<td>Intel 8051</td>
</tr>
</tbody>
</table>
15.6 Memory Organisation 279
15.7 Intel 8751 282
15.8 Programming Technique of Intel 51-Family 283
15.9 Some Programming Examples 287
15.10 Some Useful Sub-routines 294
15.11 The Motorola MC 68701 299

16. From Intel 8086 to the Pentium Processor 300
16.1 Introduction 300
16.2 The Intel 80186 (i186) Microprocessor 301
 16.2.1 Pin configuration of Intel 80186 301
 16.2.2 Instruction set 303
16.3 The Intel 80286 (i286) Microprocessor 304
 16.3.1 Processing units of the 80286 305
 16.3.2 Memory address modes of the 80286 306
 16.3.3 Descriptors and selectors 308
 16.3.4 Address translation registers and physical addresses 309
 16.3.5 Protection mechanisms in the 80286 310
 16.3.6 Task switching and task gates 310
 16.3.7 Some instructions for PVAM 311
 16.3.8 Pin configuration of the Intel 80286 311
16.4 The Intel 80386 32-Bit Microprocessor 314
 16.4.1 Code segment, instruction pointer and program execution 315
 16.4.2 Stack segment and stack pointer 316
 16.4.3 Data segment and memory addressing 317
 16.4.4 RISC mechanism and hardware instructions 317
 16.4.5 Non destructive operation 318
 16.4.6 Instruction pipelining 318
16.5 The Intel 80486 Processor 319
 16.5.1 Basic 80486 architecture 320
 16.5.2 The internal structure of the i486 321
 16.5.3 The 80486 memory and memory management 323
 16.5.4 The i486 pipeline and the cache register 324
 16.5.5 The 80486 instruction set 325
 16.5.6 Pin configuration of the Intel 80486 microprocessor 326
16.6 The Pentium Processor 328
 16.6.1 The pentium registers 329
 16.6.2 The flag register of the pentium 331
16.6.3 Control registers of the pentium 331
16.6.4 The debug registers 333
16.6.5 The memory management, test and model specific registers 334
16.6.6 Registers of the floating-point unit 334
16.6.7 The integer pipelines U and V 335
16.6.8 The floating point pipeline 336
16.6.9 Pin configuration of the pentium 336

17. Introduction to Embedded System
17.1 Introduction 342
17.2 Features of Embedded System 342
17.3 Some Examples of Embedded System 342
17.4 Characteristics of an Embedded System 343
17.5 8/16 Bits Microprocessor/Microcontroller 344
17.6 Static VAR Controller 344
17.7 Major Causes of Energy Loss 344
17.8 Introduction to SVC 345
17.9 Why Static Var Compensator (SVC) 345
17.10 Types of SVC 345
17.11 Why 8051 CPU Based Microcontroller Used 345
17.12 Modeling 346
17.13 Load Bus Voltage Control Philosophy 346
17.14 System Hardware 347
17.15 Power Circuit 348
17.16 Firing Angle Controller Module 348
17.17 Signal Transmitting Circuitry 348
17.18 System Software 349
17.19 Generation of a Set of Six Triggering Pluses 349
17.20 Limitation 350

Appendices
1. 8085/8085A Instruction Set 353
2. Z-80 Instruction Set 358
3. Some Instruction Sets of 8086 CPU 369
4. Some Advanced Features in 8085A 372
5. Standard Peripherals for Motorola, Zilog and Rockwell System 377

References 379
Index 381