Solid Oxide Fuel Cells
From Materials to System Modeling

Edited by

Meng Ni
Hong Kong Polytechnic University, Hung Hom, Kowloon, P.R. China
Email: meng.ni@polyu.edu.hk

Tim S. Zhao
The Hong Kong University of Science and Technology, Hong Kong, P.R. China
Email: metzhao@ust.hk
Contents

Chapter 1 Introduction to Stationary Fuel Cells

Ibrahim Dincer and C. Ozgur Colpan

1.1 General Introduction to Fuel Cells

1.2 Introduction to Low-Temperature Fuel Cells

1.3 Introduction to Solid Oxide Fuel Cells

1.3.1 Classification of SOFC Systems

1.3.2 Fuel Options for SOFC

1.4 Integrated SOFC Systems

1.5 Basic SOFC Modelling

1.6 Case Study

1.6.1 Analysis

1.6.2 Results and Discussion

1.7 Conclusions

References

Chapter 2 Electrolyte Materials for Solid Oxide Fuel Cells (SOFCs)

Yu Liu, Moses Tade and Zongping Shao

2.1 A General Introduction to Electrolyte of SOFCs

2.2 The Requirements of Electrolyte

2.3 Classification of Electrolytes

2.3.1 Oxygen-ion Conducting Electrolyte

2.3.2 Proton-conducting Electrolyte

2.3.3 Dual-phase Composite Electrolyte

2.4 Future Vision

References
Chapter 3 Cathode Material Development 56
Yao Wang, Yanxiang Zhang, Ling Zhao and Changrong Xia

3.1 Introduction 56
3.2 Cathodes for Oxygen Ion-Conducting Electrolyte Based SOFCs 57
 3.2.1 Electron Conducting Cathodes 57
 3.2.2 Mixed Oxygen Ion-Electron Conducting Cathodes 61
 3.2.3 Microstructure Optimized Cathodes 65
 3.2.4 Cathode Reaction Mechanisms 70
3.3 Cathodes for Proton-Conducting Electrolyte Based SOFCs 73
 3.3.1 Electron-Conducting Cathodes 73
 3.3.2 Mixed Oxygen Ion-Electron Conducting Cathodes 74
 3.3.3 Mixed Electron-Proton Conducting Cathodes 77
 3.3.4 Microstructure Optimized Cathodes 78
 3.3.5 Cathode Reaction Mechanisms 80
3.4 Summary and Conclusions 82
Acknowledgements 82
References 83

Chapter 4 Anode Material Development 88
Shamiul Islam and Josephine M. Hill

4.1 Required Properties of Anode Materials 88
4.2 Hydrogen Fuel 89
4.3 Methane Fuel 90
 4.3.1 Conventional Ni/YSZ Anodes 91
 4.3.2 Alternative Anodes 92
4.4 Higher Hydrocarbon Fuels (Propane and Butane) 94
4.5 Fuels from Biomass 95
 4.5.1 Biomass-Simulated Gas 96
 4.5.2 Biomass – Actual Gas 97
4.6 Liquid Fuels 98
4.7 Ammonia Fuel 100
4.8 Conclusions 101
References 101

Chapter 5 Interconnect Materials for SOFC Stacks 106
Xingbo Liu, Junwei Wu and Christopher Johnson

5.1 Introduction 106
5.2 Lanthanum Chromites as Interconnect 107
5.2.1 Conductivity 108
5.2.2 Thermal Expansion 111
5.2.3 Gas Tightness, Processing and Chemical Stability 113
5.2.4 Other Ceramic Interconnect 114
5.2.5 Applications 114
5.3 Metallic Alloys as Interconnect 116
5.3.1 Selection of Metallic Materials 116
5.3.2 Problems for Metallic Materials as Interconnect 120
5.3.3 Interconnect Coatings 123
5.3.4 Applications of Metallic Interconnects 126
5.4 Concluding Remarks 130
References 130

Chapter 6 Nano-structured Electrodes of Solid Oxide Fuel Cells by Infiltration 135
San Ping Jiang

6.1 Introduction 135
6.2 Infiltration Process 136
6.2.1 The Technique 136
6.2.2 Factors Affecting Infiltration Process and Microstructure 140
6.3 Nano-structured Electrodes 142
6.3.1 Performance Promotion Factor 142
6.3.2 Nano-structured Cathodes 143
6.3.3 Nano-structured Anodes 150
6.4 Microstructure and Microstructural Stability of Nano-structured Electrodes 155
6.4.1 Microstructure Effect 155
6.4.2 Microstructural Stability of Nano-structured Electrodes 158
6.5 Electrocatalytic Effects of Infiltrated Nanoparticles 162
6.6 Conclusions 168
Acknowledgement 169
References 169

Chapter 7 Three Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes 178
P. R. Shearing and N. P. Brandon

7.1 The Importance of 3D Characterisation and the Limitations of Stereology 179
Chapter 8 Three-Dimensional Numerical Modelling of Ni-YSZ Anode
Naoki Shikazono and Nobuhide Kasagi

8.1 Introduction
8.2 Experimental
8.2.1 Button Cell Experiment
8.2.2 Microstructure Reconstruction Using FIB-SEM
8.3 Numerical Method
8.3.1 Quantification of Microstructural Parameters
8.3.2 Governing Equations for Polarization Simulation
8.3.3 Computational Scheme
8.4 Results and Discussions
8.5 Conclusions
Acknowledgements
References

Chapter 9 Multi-scale Modelling of Solid Oxide Fuel Cells
Wolfgang G. Bessler

9.1 Introduction and Motivation
9.2 Modelling Methodologies: From the Atomistic to the System Scale
9.2.1 Overview
9.2.2 Molecular Level: Atomistic Modelling
9.2.3 Electrode Level (I): Electrochemistry with Mean-field Elementary Kinetics
9.2.4 Electrode Level (II): Porous Mass and Charge Transport
9.2.5 Cell Level: Coupling of Electrochemistry with Mass, Charge and Heat Transport 225
9.2.6 Stack Level: Computational Fluid Dynamics Based Design 226
9.2.7 System Level 226
9.3 Bridging the Gap Between Scales 227
9.3.1 General Aspects 227
9.3.2 Electrochemistry 228
9.3.3 Transport 232
9.3.4 Structure 234
9.4 Multi-scale Models for SOFC System Simulation and Control 237
9.4.1 Pressurized SOFC System for a Hybrid Power Plant 237
9.4.2 Tubular SOFC System for Mobile APU Applications 237
9.5 Conclusions 240
Acknowledgements 241
References 241

Chapter 10 Fuel Cells Running on Alternative Fuels 247
Xinwen Zhou, Ning Yan and Jing-Li Luo

10.1 Introduction 247
10.2 Fuel Cell Reactor Set-up 248
10.3 SOFCs Running on Sourgas 248
10.4 SOFCs Running on C₂H₆ and C₃H₈ 256
10.4.1 Development of Electrolyte of PC-SOFCs 258
10.4.2 Development of Anode Materials of PC-SOFCs 262
10.5 SOFCs Running on Syngas Containing H₂S 269
10.6 SOFCs Running on Pure H₂S 276
10.7 Summary 281
Acknowledgements 282
References 282

Chapter 11 Long Term Operating Stability 288
Haruo Kishimoto, Teruhisa Horita and Harumi Yokokawa

11.1 Introduction 288
11.2 Durability of Stacks/Systems 289
11.2.1 Determination of Stack Performance 289
11.2.2 Performance Degradation and Materials Deteriorations 289
11.2.3 Impurities and their Poisoning Effects on Electrode Reactivity 292
Chapter 12 Application of SOFCs in Combined Heat, Cooling and Power Systems

R. J. Braun and P. Kazempoor

12.1 Introduction

12.1.1 Drivers for Interest in Co- and Tri-generation Using Fuel Cells

12.1.2 Overview of CHP and CCHP

12.2 Application Characteristics & Building Integration

12.2.1 Commercial Buildings

12.2.2 Residential Applications

12.2.3 Building Integration & Operating Strategies

12.3 Overview of SOFC-CHP/CCHP Systems

12.3.1 SOFC System Description for CHP (Co-generation)

12.3.2 SOFC System Description for CCHP (Tri-generation)

12.4 Modelling Approaches: Cell to System

12.4.1 System-level Modelling and Performance Estimation

12.4.2 Cell/Stack Modelling for SOFC System Simulation

12.4.3 System Optimization Using Techno-economic Model Formulations

12.5 Evaluation of SOFC Systems in CCHP Applications

12.5.1 Micro-CHP

12.5.2 Large-scale CHP and CCHP Applications

12.6 Commercial Developments of SOFC-CHP Systems

12.6.1 Commercialization Efforts

12.6.2 Demonstrations

12.7 Market Barriers and Challenges

12.7.1 Energy Pricing

12.7.2 SOFC Costs

12.7.3 Technical Barriers

12.7.4 Market Barriers and Environmental Impact