PROGRAMMING THE
FINITE ELEMENT
METHOD

Fifth Edition

I. M. Smith
University of Manchester, UK

D. V. Griffiths
Colorado School of Mines, USA

L. Margetts
University of Manchester, UK
Contents

Preface to Fifth Edition xv

Acknowledgements xvii

1 Preliminaries: Computer Strategies 1

1.1 Introduction 1

1.2 Hardware 2

1.3 Memory Management 2

1.4 Vector Processors 3

1.5 Multi-core Processors 3

1.6 Co-processors 4

1.7 Parallel Processors 4

1.8 Applications Software 5

1.8.1 Compilers 5

1.8.2 Arithmetic 6

1.8.3 Conditions 7

1.8.4 Loops 8

1.9 Array Features 9

1.9.1 Dynamic Arrays 9

1.9.2 Broadcasting 9

1.9.3 Constructors 9

1.9.4 Vector Subscripts 10

1.9.5 Array Sections 11

1.9.6 Whole-array Manipulations 11

1.9.7 Intrinsic Procedures for Arrays 11

1.9.8 Modules 12

1.9.9 Subprogram Libraries 13

1.9.10 Structured Programming 15

1.10 Third-party Libraries 17

1.10.1 BLAS Libraries 17

1.10.2 Maths Libraries 17

1.10.3 User Subroutines 18

1.10.4 MPI Libraries 18

1.11 Visualisation 18

1.11.1 Starting ParaView 19

1.11.2 Display Restrained Nodes 20
2 Spatial Discretisation by Finite Elements

2.1 Introduction
2.2 Rod Element
 2.2.1 Rod Stiffness Matrix
 2.2.2 Rod Mass Element
2.3 The Eigenvalue Equation
2.4 Beam Element
 2.4.1 Beam Element Stiffness Matrix
 2.4.2 Beam Element Mass Matrix
2.5 Beam with an Axial Force
2.6 Beam on an Elastic Foundation
2.7 General Remarks on the Discretisation Process
2.8 Alternative Derivation of Element Stiffness
2.9 Two-dimensional Elements: Plane Stress
2.10 Energy Approach and Plane Strain
 2.10.1 Thermoelasticity
2.11 Plane Element Mass Matrix
2.12 Axisymmetric Stress and Strain
2.13 Three-dimensional Stress and Strain
2.14 Plate Bending Element
2.15 Summary of Element Equations for Solids
2.16 Flow of Fluids: Navier–Stokes Equations
2.17 Simplified Flow Equations
 2.17.1 Steady State
 2.17.2 Transient State
 2.17.3 Convection
2.18 Further Coupled Equations: Biot Consolidation
2.19 Conclusions
References
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.3</td>
<td>Unsymmetric Systems</td>
<td>70</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Symmetric Non-Positive Definite Equations</td>
<td>71</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Eigenvalue Systems</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Incorporation of Boundary Conditions</td>
<td>72</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Convection Boundary Conditions</td>
<td>74</td>
</tr>
<tr>
<td>3.7</td>
<td>Programming using Building Blocks</td>
<td>75</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Black Box Routines</td>
<td>76</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Special Purpose Routines</td>
<td>77</td>
</tr>
<tr>
<td>3.7.3</td>
<td>Plane Elastic Analysis using Quadrilateral Elements</td>
<td>77</td>
</tr>
<tr>
<td>3.7.4</td>
<td>Plane Elastic Analysis using Triangular Elements</td>
<td>81</td>
</tr>
<tr>
<td>3.7.5</td>
<td>Axisymmetric Strain of Elastic Solids</td>
<td>82</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Plane Steady Laminar Fluid Flow</td>
<td>83</td>
</tr>
<tr>
<td>3.7.7</td>
<td>Mass Matrix Formation</td>
<td>83</td>
</tr>
<tr>
<td>3.7.8</td>
<td>Higher-Order 2D Elements</td>
<td>84</td>
</tr>
<tr>
<td>3.7.9</td>
<td>Three-Dimensional Elements</td>
<td>86</td>
</tr>
<tr>
<td>3.7.10</td>
<td>Assembly of Elements</td>
<td>90</td>
</tr>
<tr>
<td>3.8</td>
<td>Solution of Equilibrium Equations</td>
<td>95</td>
</tr>
<tr>
<td>3.9</td>
<td>Evaluation of Eigenvalues and Eigenvectors</td>
<td>96</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Jacobi Algorithm</td>
<td>96</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Lanczos and Arnoldi Algorithms</td>
<td>98</td>
</tr>
<tr>
<td>3.10</td>
<td>Solution of First-Order Time-Dependent Problems</td>
<td>99</td>
</tr>
<tr>
<td>3.11</td>
<td>Solution of Coupled Navier–Stokes Problems</td>
<td>103</td>
</tr>
<tr>
<td>3.12</td>
<td>Solution of Coupled Transient Problems</td>
<td>104</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Absolute Load Version</td>
<td>105</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Incremental Load Version</td>
<td>106</td>
</tr>
<tr>
<td>3.13</td>
<td>Solution of Second-Order Time-Dependent Problems</td>
<td>106</td>
</tr>
<tr>
<td>3.13.1</td>
<td>Modal Superposition</td>
<td>107</td>
</tr>
<tr>
<td>3.13.2</td>
<td>Newmark or Crank–Nicolson Method</td>
<td>109</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Wilson's Method</td>
<td>110</td>
</tr>
<tr>
<td>3.13.4</td>
<td>Complex Response</td>
<td>111</td>
</tr>
<tr>
<td>3.13.5</td>
<td>Explicit Methods and Other Storage-Saving Strategies</td>
<td>112</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>113</td>
</tr>
</tbody>
</table>

4 Static Equilibrium of Structures 115

4.1 Introduction 115

Program 4.1 One-dimensional analysis of axially loaded elastic rods using 2-node rod elements 116

Program 4.2 Analysis of elastic pin-jointed frames using 2-node rod elements in two or three dimensions 121

Program 4.3 Analysis of elastic beams using 2-node beam elements (elastic foundation optional) 127

Program 4.4 Analysis of elastic rigid-jointed frames using 2-node beam/rod elements in two or three dimensions 133

Program 4.5 Analysis of elastic–plastic beams or frames using 2-node beam or beam/rod elements in one, two or three dimensions 141

Program 4.6 Stability (buckling) analysis of elastic beams using 2-node beam elements (elastic foundation optional) 150
5 Static Equilibrium of Linear Elastic Solids

5.1 Introduction

Program 5.1 Plane or axisymmetric strain analysis of a rectangular elastic solid using 3-, 6-, 10- or 15-node right-angled triangles or 4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered in $x(r)$- or $y(z)$-direction

Program 5.2 Non-axisymmetric analysis of a rectangular axisymmetric elastic solid using 8-node rectangular quadrilaterals. Mesh numbered in r- or z-direction

Program 5.3 Three-dimensional analysis of a cuboidal elastic solid using 8-, 14- or 20-node brick hexahedra. Mesh numbered in xz-planes then in the y-direction

Program 5.4 General 2D (plane strain) or 3D analysis of elastic solids. Gravity loading option

Program 5.5 Plane or axisymmetric thermoelastic analysis of an elastic solid using 3-, 6-, 10- or 15-node right-angled triangles or 4-, 8- or 9-node rectangular quadrilaterals. Mesh numbered in $x(r)$- or $y(z)$-direction

Program 5.6 Three-dimensional strain of a cuboidal elastic solid using 8-, 14- or 20-node brick hexahedra. Mesh numbered in xz-planes then in the y-direction. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver

Program 5.7 Three-dimensional strain of a cuboidal elastic solid using 8-, 14- or 20-node brick hexahedra. Mesh numbered in xz-planes then in the y-direction. No global stiffness matrix. Diagonally preconditioned conjugate gradient solver. Optimised maths library, ABAQUS UMAT version
6.7 Initial Stress
6.8 Corners on the Failure and Potential Surfaces
Program 6.5 Plane-strain earth pressure analysis of an elastic–plastic (Mohr–Coulomb) material using 8-node rectangular quadrilaterals. Rigid smooth wall. Initial stress method
6.9 Elastoplastic Rate Integration
6.9.1 Forward Euler Method
6.9.2 Backward Euler Method
6.10 Tangent Stiffness Approaches
6.10.1 Inconsistent Tangent Matrix
6.10.2 Consistent Tangent Matrix
6.10.3 Convergence Criterion
6.11 The Geotechnical Processes of Embanking and Excavation
6.11.1 Embanking
Program 6.9 Plane-strain construction of an elastic–plastic (Mohr–Coulomb) embankment in layers on a foundation using 8-node quadrilaterals. Viscoelastic strain method
6.11.2 Excavation
Program 6.10 Plane-strain construction of an elastic–plastic (Mohr–Coulomb) excavation in layers using 8-node quadrilaterals. Viscoplastic strain method 300

6.12 Undrained Analysis
Program 6.11 Axisymmetric 'undrained' strain of an elastic–plastic (Mohr–Coulomb) solid using 8-node rectangular quadrilaterals. Viscoplastic strain method 308

6.13 Glossary of Variable Names 322
6.14 Exercises 327
References 331

7 Steady State Flow
7.1 Introduction 333
Program 7.1 One-dimensional analysis of steady seepage using 2-node line elements 334
Program 7.2 Plane or axisymmetric analysis of steady seepage using 4-node rectangular quadrilaterals. Mesh numbered in x(r)- or y(z)-direction 337
Program 7.3 Analysis of plane free surface flow using 4-node quadrilaterals. 'Analytical' form of element conductivity matrix 344
Program 7.4 General two- (plane) or three-dimensional analysis of steady seepage 351
Program 7.5 General two- (plane) or three-dimensional analysis of steady seepage. No global conductivity matrix assembly. Diagonally preconditioned conjugate gradient solver 355

7.2 Glossary of Variable Names 359
7.3 Exercises 361
References 367

8 Transient Problems: First Order (Uncoupled)
8.1 Introduction 369
Program 8.1 One-dimensional transient (consolidation) analysis using 2-node 'line' elements. Implicit time integration using the 'theta' method 370
Program 8.2 One-dimensional transient (consolidation) analysis (settlement and excess pore pressure) using 2-node 'line' elements. Implicit time integration using the 'theta' method 373
Program 8.3 One-dimensional consolidation analysis using 2-node 'line' elements. Explicit time integration. Element by element. Lumped mass 377
Program 8.4 Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in \(x(r) \)- or \(y(z) \)-direction. Implicit time integration using the ‘theta’ method

Program 8.5 Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in \(x(r) \)- or \(y(z) \)-direction. Implicit time integration using the ‘theta’ method. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver

Program 8.6 Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in \(x(r) \)- or \(y(z) \)-direction. Explicit time integration using the \(\theta = 0 \) method

Program 8.7 Plane or axisymmetric transient (consolidation) analysis using 4-node rectangular quadrilaterals. Mesh numbered in \(x(r) \)- or \(y(z) \)-direction. ‘theta’ method using an element-by-element product algorithm

8.2 Comparison of Programs 8.4, 8.5, 8.6 and 8.7

Program 8.8 General two- (plane) or three-dimensional transient (consolidation) analysis. Implicit time integration using the ‘theta’ method

Program 8.9 Plane analysis of the diffusion–convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the ‘theta’ method. Self-adjoint transformation

Program 8.10 Plane analysis of the diffusion–convection equation using 4-node rectangular quadrilaterals. Implicit time integration using the ‘theta’ method. Untransformed solution

Program 8.11 Plane or axisymmetric transient thermal conduction analysis using 4-node rectangular quadrilaterals. Implicit time integration using the ‘theta’ method. Option of convection and flux boundary conditions

8.3 Glossary of Variable Names

8.4 Exercises

References

9 Coupled Problems

9.1 Introduction

Program 9.1 Analysis of the plane steady-state Navier–Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in \(x \)-direction. Freedoms numbered in the order \(u - p - v \)

Program 9.2 Analysis of the plane steady-state Navier–Stokes equation using 8-node rectangular quadrilaterals for velocities coupled to 4-node rectangular quadrilaterals for pressures. Mesh numbered in \(x \)-direction. Freedoms numbered in the order \(u - p - v \). Element-by-element solution using BiCGStab(l) with no preconditioning. No global matrix assembly
Program 9.3 One-dimensional coupled consolidation analysis of a Biot poroelastic solid using 2-node ‘line’ elements. Freedoms numbered in the order \(v - u_w\) 433

Program 9.4 Plane strain consolidation analysis of a Biot elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in order \(u - v - u_w\). Incremental load version 438

Program 9.5 Plane strain consolidation analysis of a Biot elastic solid using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in order \(u - v - u_w\). Incremental load version. No global stiffness matrix assembly. Diagonally preconditioned conjugate gradient solver 445

Program 9.6 Plane strain consolidation analysis of a Biot poroelastic-plastic (Mohr-Coulomb) material using 8-node rectangular quadrilaterals for displacements coupled to 4-node rectangular quadrilaterals for pressures. Freedoms numbered in the order \(u - v - u_w\). Viscoplastic strain method 448

9.2 Glossary of Variable Names 454

9.3 Exercises 459

References 460

10 Eigenvalue Problems 461

10.1 Introduction 461

Program 10.1 Eigenvalue analysis of elastic beams using 2-node beam elements. Lumped mass 462

Program 10.2 Eigenvalue analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in y-direction 465

Program 10.3 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals. Lanczos method. Consistent mass. Mesh numbered in y-direction 469

Program 10.4 Eigenvalue analysis of an elastic solid in plane strain using 4-node rectangular quadrilaterals with ARPACK. Lumped mass. Element-by-element formulation. Mesh numbered in y-direction 474

10.2 Glossary of Variable Names 477

10.3 Exercises 480

References 482

11 Forced Vibrations 483

11.1 Introduction 483

Program 11.1 Forced vibration analysis of elastic beams using 2-node beam elements. Consistent mass. Newmark time stepping 483

Program 11.2 Forced vibration analysis of an elastic solid in plane strain using 4- or 8-node rectangular quadrilaterals. Lumped mass. Mesh numbered in the y-direction. Modal superposition 489
Program 11.3 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in the y-direction. Implicit time integration using the 'theta' method 493

Program 11.4 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in the y-direction. Implicit time integration using Wilson's method 498

Program 11.5 Forced vibration of a rectangular elastic solid in plane strain using 8-node quadrilateral elements numbered in the y-direction. Lumped mass, complex response 501

Program 11.6 Forced vibration analysis of an elastic solid in plane strain using uniform size rectangular 4-node quadrilaterals. Mesh numbered in the y-direction. Lumped or consistent mass. Mixed explicit/implicit time integration 504

Program 11.7 Forced vibration analysis of an elastic solid in plane strain using rectangular 8-node quadrilaterals. Lumped or consistent mass. Mesh numbered in the y-direction. Implicit time integration using the 'theta' method. No global matrix assembly. Diagonally preconditioned conjugate gradient solver 508

Program 11.8 Forced vibration analysis of an elastic-plastic (von Mises) solid in plane strain using rectangular 8-node quadrilateral elements. Lumped mass. Mesh numbered in the y-direction. Explicit time integration 512

11.2 Glossary of Variable Names 517

11.3 Exercises 521

References 522

12 Parallel Processing of Finite Element Analyses 523

12.1 Introduction 523

12.2 Differences between Parallel and Serial Programs 525

12.2.1 Parallel Libraries 525

12.2.2 Global Variables 526

12.2.3 MPI Library Routines 526

12.2.4 The _pp Appendage 527

12.2.5 Simple Test Problems 527

12.2.6 Reading and Writing 530

12.2.7 rest Instead of nf 532

12.2.8 Gathering and Scattering 533

12.2.9 Reindexing 533

12.2.10 Domain Composition 533

12.2.11 Third-party Mesh-partitioning Tools 534

12.2.12 Load Balancing 535

Program 12.1 Three-dimensional analysis of an elastic solid. Compare Program 5.6 536

Program 12.2 Three-dimensional analysis of an elastoplastic (Mohr–Coulomb) solid. Compare Program 6.13 542

Program 12.3 Three-dimensional Laplacian flow. Compare Program 7.5 548
Program 12.4 Three-dimensional transient heat conduction—implicit analysis in time. Compare Program 8.5
Program 12.5 Three-dimensional transient flow—explicit analysis in time. Compare Program 8.6
Program 12.6 Three-dimensional steady-state Navier–Stokes analysis. Compare Program 9.2
Program 12.7 Three-dimensional analysis of Biot poro elastic solid. Incremental version. Compare Program 9.5
Program 12.8 Eigenvalue analysis of three-dimensional elastic solid. Compare Program 10.3
Program 12.10 Forced vibration analysis of three-dimensional elasto plastic solid. Explicit integration in time. Compare Program 11.8
12.3 Graphics Processing Units
12.4 Cloud Computing
12.5 Conclusions
12.6 Glossary of Variable Names
References

Appendix A Equivalent Nodal Loads
Appendix B Shape Functions and Element Node Numbering
Appendix C Plastic Stress-Strain Matrices and Plastic Potential Derivatives
Appendix D main Library Subprograms
Appendix E geom Library Subroutines
Appendix F Parallel Library Subroutines
Appendix G External Subprograms

Author Index
Subject Index