Responsive Photonic Nanostructures
Smart Nanoscale Optical Materials

Edited by

Yadong Yin
University of California, Riverside, California, USA
Email: yadongy@ucr.edu
Contents

Chapter 1 Responsive Bragg Reflectors 1
Mauricio E. Calvo and Hernán Miguez

1.1 Introduction 1
1.2 Fundamentals: Optical Properties of Multilayers 2
 1.2.1 Reflection and Transmission 3
 1.2.2 Field Distribution Inside Multilayers 6
1.3 Methods and Materials 7
 1.3.1 Reactive Substrates: Porous Silicon and Alumina Bragg Mirrors 8
 1.3.2 Nanoparticle Multilayers 9
 1.3.3 Supramolecularly Templated Multilayers 10
 1.3.4 Glancing-Angle Deposition: Columnar Structures 11
 1.3.5 Polymeric Multilayers 12
 1.3.6 Hybrid Multilayers 13
1.4 Response to Environmental Changes 13
 1.4.1 Effect of Infiltration: Refractive-Index Changes and Swelling 13
 1.4.2 Examples of Optical Response 15
1.5 Concluding Remarks 19
Acknowledgements 19
References 19

Chapter 2 Stop-Bands in Photonic Crystals: From Tuning to Sensing 21
Zhuoying Xie, Yuanjin Zhao, Hongchen Gu, Baofen Ye and Zhong-Ze Gu

2.1 Natural Photonic Crystals and Bioinspiration 21
 2.1.1 Photonic Stop-Band and Structural Color 21
Contents

2.1.2 Variable Structural Color in Nature
2.1.3 General Strategies of Tuning
2.2 Responsive-Molecules-Based Tunable Photonic Crystals
2.2.1 Photochromic Photonic Crystals
2.2.2 Liquid-Crystal Photonic Crystals
2.3 Magnetic-Nanoparticles-Based Tunable Colloidal Crystals
2.3.1 Magnetically Tunable Film
2.3.2 Magnetochromatic Microcapsules
2.4 Smart Photonic Materials for Sensing
2.4.1 Photonic Crystal Films for Label-Free Sensing
2.4.2 Photonic Crystal Beads for Bioassays

References

Chapter 3
Opal Photonic Crystal Films with Tunable Structural Color
Hiroshi Fudouzi

3.1 Introduction
3.2 Tunable Optical Properties of Opal Composites
3.3 Tuning the Lattice Distance *via* Swelling Phenomena
3.4 Tuning the Lattice Distance Using Mechanical Deformation
3.5 Potential Applications Using Structural Color
3.5.1 Chromic Materials for Sensors
3.5.2 Structural Color for Printing and Displays
3.5.3 Color-Tunable Textile Fibers
3.5.4 Visualization Technique for the Strain Deformation of Metal Plates

References

Chapter 4
Tuning Color and Chroma of Opal and Inverse Opal Structures
David Josephson and Andreas Stein

4.1 Introduction
4.2 Stop-Band Features in Opal and Inverse Opal Photonic Crystal
4.2.1 Stop-Band Position
4.2.2 Stop-Band Shape and Intensity
4.3 Dynamic Color Changes in Opaline Photonic Crystals
4.3.1 Chromic Changes in Opal Structures by Modification of Lattice Parameters
4.3.2 Chromic Changes in Opal Structures by Modification of Refractive Indices

References
Chapter 7 Applications of Stimuli-Sensitive Inverse Opal Gels
Yukikazu Takeoka

7.1 Introduction to Stimuli-Sensitive Inverse Opal Gels
7.2 Visualization and Spectroscopic Analysis of the Self-Sustaining Peristaltic Motion of Inverse Opal Gels Synchronized with the BZ Reaction
7.3 A Light-Sensitive Inverse Opal Gel that Exhibits Rapid Two-State Switching between Two Arbitrary Structural Colors
7.4 Tunable Full-Color Material from Gel Particles Confined in Inverse Opal Gels
7.5 Conclusions

Chapter 8 Bioinspired Fabrication of Colloidal Photonic Crystals with Controllable Optical Properties and Wettability
Fengyu Li, Jingxia Wang and Yanlin Song

8.1 Introduction
8.1.1 Functional Biological PCs
8.2 Bioinspired Fabrication of Functional PCs
8.2.1 Fabrication of PCs with Controllable Wettability
8.2.2 Anisotropic PCs from Special Latex Particles
8.2.3 Fabrication of Colloidal PCs with High Mechanical Strength
8.2.4 Large-Scale Fabrication of Colloidal PCs by Spray Coating or Inkjet Printing
8.3 Application of Photonic Crystals in Various Optic Devices
8.3.1 High-Performance Photoluminescent Devices
8.3.2 Ultrasensitive Detecting
8.3.3 High-Performance Optical Data Storage
8.3.4 High-Efficiency Light Catalysis

References
Chapter 9 Magnetic Assembly and Tuning of Colloidal Responsive Photonic Nanostructures

Le He, Mingsheng Wang and Yadong Yin

9.1 Introduction 234
9.2 Magnetic Interactions 236
9.3 Magnetic Assembly of Colloidal Photonic Structures 238
9.4 Magnetic Tuning of Photonic Properties 242
9.5 Applications of Magnetically Responsive Photonic Nanostructures
 9.5.1 Flexible Magnetically Responsive Photonic Film 248
 9.5.2 Rewritable Photonic Paper by Solvent Swelling 249
 9.5.3 Humidity Sensor 250
 9.5.4 Magnetically Responsive Orientation-Dependent Photonic Structures 251
 9.5.5 Structural Color Printing and Encoding 253
 9.5.6 Colloidal Force Measurement 255
9.6 Conclusion 258
Acknowledgements 259
Biographical Information 259
References 259

Chapter 10 Chemical Routes to Fabricate Three-Dimensional Magnetophotonic Crystals

Oana Pascu, Gervasi Herranz and Anna Roig

10.1 Introduction 262
10.1.1 Photonics in Our Future 262
10.1.2 Photonic Crystals: Photonic Bandgap Effects 263
10.1.3 Magnetophotonic Crystals: Magneto-Optical Effects 264
10.1.4 Three-Dimensional Magnetophotonic Crystals Fabrication Approaches 265
10.2 3D Magnetophotonic Crystals by Infiltration with ex-situ Synthesized Magnetic Nanoparticles to the Opal Structure 266
 10.2.1 Nanoparticles Synthesis, Structural and Functional (Magnetic, Magneto-Optical) Characterization 267
 10.2.2 Inverse Magnetophotonic Crystal System. Structural and Optical/Magneto-Optical Properties. Enhanced Magneto-Optical Effects 270
10.3 3D Magnetophotonic Crystals Using *in-situ* Deposition of Magnetic Nanoparticles 274
 10.3.1 Magnetic Ferrite Nanoparticles 275
 10.3.2 Magnetophotonic Crystals – Structural Characterization (Influence of Precursor Types, Concentration, Deposition Time, Surface Chemical Functionalization) 278
 10.3.3 Magnetophotonic Crystals: Functionalities (Optical and Magneto-Optical) of Direct and Inverse Magnetic Opals. Enhanced Magneto-Optical Effects 282

10.4 Conclusions and Outlook 286
Acknowledgements 287
References 287

Chapter 11 Polymer Nanocomposites: Conductivity, Deformations and Photoactuation 292
Jean E. Marshall, Yan Y. Huang and Eugene M. Terentjev

11.1 Introduction 292
11.2 Dispersion of Nanostructures into Elastomers 294
 11.2.1 Nanotube Separation and Dispersion 295
 11.2.2 Nanostructure Stabilization 299
 11.2.3 Dispersion of Nanoparticles in Liquid-Crystalline Elastomers 303
11.3 Nanocomposite Conductivity 308
 11.3.1 Nanotube Network Coating 308
 11.3.2 Bulk Nanotube Composite 312
11.4 Light-Induced Actuation 318
 11.4.1 Sensitizing Polymers to Light 318
 11.4.2 Enhancement of Shape-Memory Properties 319
 11.4.3 Actuation of Aligned LCE Nanocomposites 321
11.5 Conclusions 322
References 323

Subject Index 330