Vladimir Maz'ya • Alexander Movchan Michael Nieves

Green's Kernels and Meso-Scale Approximations in Perforated Domains

Contents

Part I Green's Functions in Singularly Perturbed Domains

1	Uniform Asymptotic Formulae for Green's Functions			
	for t	he Lapla	cian in Domains with Small Perforations	3
	1.1	Green's	s Function for a Multi-dimensional Domain	
		with a S	Small Hole	3
	1.2	Green's	s Function for the Dirichlet Problem in a Planar	
		Domaii	n with a Small Hole	9
		1.2.1	Asymptotic Approximation of the Capacitary	
			Potential	12
		1.2.2	Uniform Asymptotic Approximation	13
	1.3	Corolla	rries	17
2	Mixe	ed and N	eumann Boundary Conditions for Domains	
			oles and Inclusions: Uniform Asymptotics	
	of G	reen's Ke	ernels	21
	2.1	Mixed	Boundary Value Problem in a Planar Domain	
		with a S	Small Hole or a Crack	21
		2.1.1	Special Solutions of Model Problems	22
		2.1.2	The Dipole Matrix P	24
		2.1.3	Pointwise Estimate of a Solution	
			to the Exterior Neumann Problem	25
		2.1.4	Asymptotic Properties of the Regular Part	
			of the Neumann Function in $\mathbb{R}^2 \setminus F$	27
		2.1.5	Maximum Modulus Estimate for Solutions	
			to the Mixed Problem in Ω_{ε} , with the	
			Neumann Data on ∂F_{ε}	30
		2.1.6	Approximation of Green's Function $G_{\varepsilon}^{(N)}$	31
		2.1.7	Simpler Asymptotic Formulae for Green's	
			Function $G_{\varepsilon}^{(N)}$	33

	2.2	Mixed	Boundary Value Problem with the Dirichlet	
	2.2	Conditi	ion on ∂F_{ϵ}	35
		2.2.1	Special Solutions of Model Problems	35
		2.2.2	Asymptotic Property of the Regular Part	
			of Green's Function in $\mathbb{R}^2 \setminus F$	38
		2.2.3	Maximum Modulus Estimate for Solutions	
			to the Mixed Problem in Ω_{ε} , with the	
			Dirichlet Data on ∂F_{ϵ}	39
		2.2.4	Dirichlet Data on ∂F_{ε}	40
		2.2.5	Simpler Asymptotic Representation	
		2.2.0	of Green's Function $G_{\varepsilon}^{(\hat{D})}$	43
	2.3	The No	eumann Function for a Planar Domain	
	2.3	with a	Small Hole or Crack	44
		2.3.1	Special Solutions of Model Problems	45
		2.3.2	Maximum Modulus Estimate for Solutions	
		2,5,2	to the Neumann Problem in Ω_{ε}	45
		2.3.3	Asymptotic Approximation of N_{ε}	48
		2.3.4	Simpler Asymptotic Representation	
		2.5.4	of Neumann's Function N_{ε}	49
	2.4	Asymr	ptotic Approximations of Green's Kernels	
	for Mixed and Neumann's Problems in Three Dimensions		xed and Neumann's Problems in Three Dimensions	50
		2.4.1	Special Solutions of Model Problems	
		2	in Limit Domains	51
		2.4.2	Approximations of Green's Kernels	53
3	Gree	en's Fun	action for the Dirichlet Boundary Value	
_	Prob	olem in a	a Domain with Several Inclusions	59
	3.1		in of Definition and the Governing Equations	
	•		e Case of Multiple Inclusions	59
	3.2	Green	's Function for the Case of Anti-plane Shear	
		for a I	Domain with Several Inclusions	60
		3.2.1	Estimates for the Functions $h(J)$ and $\mathcal{E}(J)$	
			in the Unbounded Domain	61
		3.2.2	The Capacitary Potential	61
		3.2.3	A Uniform Asymptotic	
			Approximation of Green's Function	
			for $-\Delta$ in a Two-Dimensional Domain	
			with Several Small Inclusions	65
	3.3	Simpl	lified Asymptotic Formulae for Green's Function	
			ct to Constraints on the Independent Variables	70

4	Numerical Simulations Based on the Asymptotic Approximations 4.1 Asymptotic Formulae Versus Numerical Solution		75	
		for the	Operator −Δ	75
		4.1.1 4.1.2	Domain and the Asymptotic Approximation Example: A Configuration with a Large	76
		4.1.3	Number of Small Inclusions Example: A Configuration with Inclusions	78 _.
			of Relatively Large Size	79
5	Othe	r Exam	ples of Asymptotic Approximations	
	of Green's Functions in Singularly Perturbed Domains			
	5.1		ation of a Smooth Exterior Boundary	83 83
	5.2		s Function for the Dirichlet–Neumann Problem	U.S
			uncated Cone	84
	5.3		richlet–Neumann Problem in a Long Rod	87
	0.0	5.3.1	Capacitary Potential	88
		5.3.2	Asymptotic Approximation of Green's Function	89
		5.3.3	Green's Function G_M Versus Green's	09
		5.5.5	Functions for Unbounded Domains	92
		5.3.4	The Dirichlet-Neumann Problem in a Thin Rod	93
		3.3.7	The Difference-recumann Frooten in a Tinn Rod	93
Par			Tensors for Vector Elasticity in Bodies all Defects	
6	Greei	n's Tenso	or for the Dirichlet Boundary Value Problem	
6			or for the Dirichlet Boundary Value Problem with a Single Inclusion	97
6		omain v	with a Single Inclusion	
6	in a E	omain v	with a Single Inclusions Representation for Vector Elasticity	97
6	in a E	Oomain v Green's 6.1.1	with a Single Inclusion S Representation for Vector Elasticity Geometry and Matrix Differential Operators	
6	in a E 6.1	Omain v Green's 6.1.1 Estimat	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions	97 98
6	in a E 6.1	Oomain of Green's 6.1.1 Estimate of Elast	with a Single Inclusion Se Representation for Vector Elasticity Geometry and Matrix Differential Operators Sees for the Maximum Modulus of Solutions Sticity Problems in Domains with Small Inclusions	97 98 101
6	in a E 6.1	Oomain of Green's 6.1.1 Estimate of Elast 6.2.1	with a Single Inclusion So Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω	97 98 101 102
6	in a E 6.1	Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$	97 98 101 102 102
6	in a E 6.1 6.2	Green's 6.1.1 Estimate of Elast 6.2.1 6.2.2 6.2.3	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations	97 98 101 102
6	in a E 6.1	Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2 6.2.3 Green's	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain	97 98 101 102 102 105
6	in a E 6.1 6.2	Green's 6.1.1 Estimate of Elast 6.2.1 6.2.2 6.2.3 Green's with a S	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions cicity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion	97 98 101 102 102
6	in a E 6.1 6.2	Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2 6.2.3 Green's	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators less for the Maximum Modulus of Solutions licity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three	97 98 101 102 102 105 109
6	in a E 6.1 6.2	Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions	97 98 101 102 102 105 109
6	in a E 6.1 6.2	Green's 6.1.1 Estimate of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix	97 98 101 102 102 105 109
6	in a E 6.1 6.2	Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix Asymptotic Estimates for the Regular Part h	97 98 101 102 102 105 109 109
6	in a E 6.1 6.2	Ormain of Green's 6.1.1 Estimate of Elast 6.2.1 6.2.2 6.2.3 Green's with a \$6.3.1 6.3.2 6.3.3	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators less for the Maximum Modulus of Solutions licity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix Asymptotic Estimates for the Regular Part h of Green's Tensor in an Unbounded Domain	97 98 101 102 102 105 109
6	in a E 6.1 6.2	Green's 6.1.1 Estimate of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions licity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix Asymptotic Estimates for the Regular Part h of Green's Tensor in an Unbounded Domain A Uniform Asymptotic Formula for Green's	97 98 101 102 102 105 109 110 118
6	in a E 6.1 6.2 6.3	Ormain v Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1 6.3.2 6.3.3	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix Asymptotic Estimates for the Regular Part h of Green's Tensor in an Unbounded Domain A Uniform Asymptotic Formula for Green's Function G_{ε} in Three Dimensions	97 98 101 102 102 105 109 110 118 119
6	in a E 6.1 6.2	Ormain v Green's 6.1.1 Estimate of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1 6.3.2 6.3.3 Green's	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators less for the Maximum Modulus of Solutions licity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix Asymptotic Estimates for the Regular Part h of Green's Tensor in an Unbounded Domain A Uniform Asymptotic Formula for Green's Function G_{ε} in Three Dimensions	97 98 101 102 102 105 109 110 118
6	in a E 6.1 6.2 6.3	Ormain v Green's 6.1.1 Estimat of Elast 6.2.1 6.2.2 6.2.3 Green's with a S 6.3.1 6.3.2 6.3.3	with a Single Inclusion Representation for Vector Elasticity Geometry and Matrix Differential Operators tes for the Maximum Modulus of Solutions ticity Problems in Domains with Small Inclusions The Maximum Principle in Ω The Maximum Principle in $C\bar{\omega}$ The Operator Notations Tensor for a Three-Dimensional Domain Small Inclusion Green's Matrices for Model Domains in Three Dimensions The Elastic Capacitary Potential Matrix Asymptotic Estimates for the Regular Part h of Green's Tensor in an Unbounded Domain A Uniform Asymptotic Formula for Green's Function G_{ε} in Three Dimensions	97 98 101 102 102 105 109 110 118 119

X

Contents xi

	8.4	Model Boundary Value Problems	175	
		8.4.1 The Dipole Fields	176	
		<u>-</u>	177	
		8.4.3 The Asymptotics of the Matrix W at Infinity	178	
			179	
		8.4.5 An Estimate for the Regular Part of the		
		<u> </u>	179	
	8.5	A Uniform Asymptotic Formula for G_{ε} of the Mixed		
	•		183	
	8.6	Simplified Asymptotic Formulae for G_{ε} Under		
		Constraints on the Independent Spatial Variables		
		• • •	186	
Par	t III	Meso-scale Approximations: Asymptotic Treatment		
		of Perforated Domains Without Homogenization		
9	Mese	-scale Approximations for Solutions of Dirichlet Problems	191	
	9.1	Main Notations and Formulation of the Problem		
		in the Perforated Region	191	
	9.2	Auxiliary Problems	193	
			193	
		9.2.2 Capacitary Potentials of $F^{(j)}$	193	
		9.2.3 Green's Function for the Unperturbed Domain	194	
	9.3	Formal Asymptotic Algorithm	194	
	9.4		195	
	9.5		202	
	9.6	The Energy Estimate	204	
	9.7	Meso-scale Approximation of Green's Function in Ω_N	212	
10		d Boundary Value Problems in Multiply-Perforated	001	
			221	
	10.1		222	
	10.2	•	223	
	10.3	The Formal Approximation of u_N for the Infinite	225	
	10.4		225	
	10.4	Algebraic System for the Coefficients	005	
	40 =	in the Meso-scale Approximation	227 231	
	10.5			
	10.6	F F	237	
		10.6.1 Formal Asymptotic Algorithm	005	
		· · · · · · · · · · · · · · · · · · ·	237	
		10.6.2 Algebraic System	238	
		10.6.3 Energy Estimate for the Remainder	240	
	10.7	Illustrative Example	242	
		10.7.1 The Case of a Domain with a Cloud		
		of Spherical Voids	242	

10.7.2	Finite Elements Simulation Versus	
	the Asymptotic Approximation	244
10.7.3	Non-uniform Cloud Containing a Large	
	Number of Spherical Voids	245
Bibliographical Ro	emarks	249
References		251
Subjects Index		255
Author Index		257