Contents

Chapter 1 Computational Quantum Chemistry

1.1 What Does Computational Quantum Chemistry Offer? 1
1.2 The Model: Quantum Mechanics 3
 1.2.1 The Schrödinger Equation and the Born-Oppenheimer Approximation 5
 1.2.2 Electronic Wavefunctions and the Antisymmetry Principle 11
 1.2.3 Molecular Orbitals and Basis Set Expansions 13
1.3 Chemistry in Silico: Where Do You Start? 15
 1.3.1 Potential Energy Curves, Forces and Force Constants 15
 1.3.2 Potential Energy Surfaces, Stationary Points and Reactivity 17
 1.3.3 Linking the Electronic Energy with Thermodynamic State Functions 23
1.4 Standard Models of Electronic Structure 27
 1.4.1 The Hartree-Fock Model and Electron Correlation 28
 1.4.2 Configuration Interaction Methods 35
 1.4.3 Perturbation Theory Methods 37
 1.4.4 Coupled-Cluster Methods 39
 1.4.5 Multiconfigurational and Multireference Methods 41
 1.4.6 Density Functional Methods 46
1.5 How Do You Select a Theoretical Model? 47
1.6 The Apparatus: Hardware and Software 48
Appendix 1A Physical Constants, Atomic Units and Conversion Factors 52
Appendix 1B Elementary Properties of Determinants 53
Appendix 1C Diagonalisation of Matrices 56
Appendix 1D Moments of Inertia and the Inertia Tensor 60
References 62

Chapter 2 Computational Electronic Structure Theory

2.1 A Few Essential Notions and Requirements 63
2.1.1 Matrix Elements and Integrals 65
2.1.2 Permutational Symmetry of One- and Two-Electron Integrals 69
2.1.3 Spin Symmetry 70
2.1.4 The Variation Theorem 72
2.2 Hartree–Fock Theory 74
2.2.1 Minimisation of the Hartree–Fock Energy 77
2.2.2 The Canonical Hartree–Fock Equations 80
2.2.3 Understanding Solutions to the Hartree–Fock Equations: Canonical Molecular Orbitals 81
2.2.4 Understanding Solutions to the Hartree–Fock Equations: Orbital Energies 82
2.2.5 The Total Hartree–Fock Energy 83
2.2.6 Ionisation Energies: Koopmans' Theorem 85
2.3 Open-Shell Systems in Hartree–Fock Theory 87
2.3.1 The Restricted Open-Shell Hartree–Fock (ROHF) Method 87
2.3.2 The Unrestricted Hartree–Fock (UHF) Method 88
2.3.3 UHF Method for $S = 0$ and the Dissociation Problem 91
2.3.4 Spin Polarisation 92
2.4 Computational Realisation of the Hartree–Fock Theory 94
2.4.1 The Roothaan–Hall Equations and Basis Set Expansions 94
2.4.2 Orbital Optimisation: The Self-Consistent Field (SCF) Procedure for Closed Shells 99
2.4.3 Basis Set Expansions in the UHF Method 99
2.4.4 Convergence of the SCF Process 102
2.4.5 The Direct SCF Method 104
2.5 Molecular Basis Sets 106
2.5.1 Gaussian Type Functions 106
2.5.2 Types of Contracted Basis Sets 113
2.5.3 Basis Set Superposition Error: Non-Covalent Interactions 116
2.6 Electron Correlation: Background to Post Hartree-Fock Methods 118
 2.6.1 Brillouin’s Theorem 121
 2.6.2 Spin Eigenfunctions/Configuration State Functions 122
 2.6.3 Integral Approximations: Density Fitting 124
2.7 Configuration Interaction Methods 127
 2.7.1 Density Matrices and Natural Orbitals 132
 2.7.2 Truncated Configuration Interaction Methods 133
 2.7.3 The Frozen Core Approximation 137
2.8 Perturbation Methods 138
 2.8.1 Möller–Plesset Perturbation Theory 143
 2.8.2 Improvements in Low-Order Perturbation Theory: Spin Component Scaling and Orbital Optimisation 147
2.9 Coupled-Cluster Methods 148
 2.9.1 The Coupled-Cluster Doubles Equations 149
 2.9.2 Higher Order Methods 152
2.10 Localised Orbital Formulations of Post Hartree–Fock Techniques 153
2.11 Non-Dynamic Electron Correlation and Multi-configurational Reference Wavefunctions 157
 2.11.1 The MCSCF Method and Associated Optimisation Problems 160
 2.11.2 Electron Correlation Methods Based on a CASSCF Reference Wavefunction 165
2.12 Density Functional Theory 168
 2.12.1 The Hohenberg–Kohn Theorems 170
 2.12.2 The Kohn–Sham Method 172
 2.12.3 The Local Density Approximation 175
 2.12.4 Generalised Gradient Approximation 176
 2.12.5 Meta-Generalised Gradient Approximation 178
 2.12.6 Adiabatic Connection: Hybrid Functionals 178
 2.12.7 Double Hybrid Functionals 179
 2.12.8 Non-Covalent Interactions 180
 2.12.9 Ionisation Energies in Density Functional Theory 181
Appendix 2A The Method of Lagrange Multipliers 183
Appendix 2B Orthogonalisation Methods 184
Appendix 2C Computing Eigenvalues and Eigenvectors of Large Matrices 187
References 188
Chapter 3 The Computation of Molecular Properties

3.1 Molecular Properties as Derivatives of the Potential Energy 191
3.2 Analytic Differentiation of the Energy Expression 194
 3.2.1 Variational Wavefunctions 195
 3.2.2 Non-Variational Wavefunctions 197
3.3 First Derivative with Respect to Geometric Coordinates: Variational Case 198
3.4 Second Derivative with Respect to Geometric Coordinates: Variational Case 201
3.5 Application of Energy Derivatives with Respect to Geometric Coordinates: Geometry Optimisation 204
3.6 Electric and Magnetic Field Perturbations 208
 3.6.1 External Electric Fields 208
 3.6.2 External Magnetic Fields and Internal Magnetic Moments 209
3.7 Time-Dependent Linear Response Methods: Excited States 217
3.8 Continuum Methods of Solvation 221
References 225

Chapter 4 Understanding Molecular Wavefunctions, Orbitals and Densities

4.1 Isosurface Representations 228
4.2 Canonical Orbitals, Density Matrices and Natural Orbitals 230
4.3 Natural Bond Orbitals 233
4.4 Localised Molecular Orbitals 234
4.5 Natural Transition Orbitals 237
4.6 Electronic Population Analysis 239
4.7 Mayer Bond Orders and Valencies 242
4.8 Electrostatic Potential 242
4.9 Energy Decomposition Analysis 244
References 248

Chapter 5 Relativistic Effects and Electronic Structure Theory

5.1 Relativistic Effects and Chemistry 249
5.2 Special Relativity and the Dirac Equation 252
5.3 Elimination of the Small Component: The Pauli Approximation 257
Contents

5.4 Elimination of the Small Component: Regular Approximations 260
5.5 Elimination of the Small Component: Unitary Decoupling of the Dirac Equation 263
5.6 Elimination of the Small Component: The Picture Change Transformation of Operators 266
5.7 Spin–Orbit Coupling 267
5.8 Summary 270
References 270

Subject Index 272