CALCIUM TECHNIQUES
A LABORATORY MANUAL

EDITED BY

Jan B. Parys
KU Leuven

Martin D. Bootman
The Open University

David I. Yule
University of Rochester

Geert Bultynck
KU Leuven

COLD SPRING HARBOR LABORATORY PRESS
Cold Spring Harbor, New York • www.cshlpess.org
Contents

Preface xv

SECTION 1. FLUORESCENCE

CHAPTER 1

INTRODUCTION

Fluorescence Microscopy

Michael J. Sanderson, Ian Smith, Ian Parker, and Martin D. Bootman

CHAPTER 2

INTRODUCTION

Ca$^{2+}$-Sensitive Fluorescent Dyes and Intracellular Ca$^{2+}$ Imaging

Martin D. Bootman, Katja Rietdorf, Tony Collins, Simon Walker, and Michael Sanderson

CHAPTER 3

PROTOCOLS

1 Loading Fluorescent Ca$^{2+}$ Indicators into Living Cells

Martin D. Bootman, Katja Rietdorf, Tony Collins, Simon Walker, and Michael Sanderson

2 Converting Fluorescence Data into Ca$^{2+}$ Concentration

Martin D. Bootman, Katja Rietdorf, Tony Collins, Simon Walker, and Michael Sanderson

PROTOCOLS

1 Verifying the Function and Localization of Genetically Encoded Ca$^{2+}$ Sensors and Converting FRET Ratios to Ca$^{2+}$ Concentrations

J. Genevieve Park and Amy E. Palmer

2 Measuring the In Situ K_d of a Genetically Encoded Ca$^{2+}$ Sensor

J. Genevieve Park and Amy E. Palmer
CHAPTER 4

INTRODUCTION

Photolysis of Caged Compounds: Studying Ca2+ Signaling and Activation of Ca2+-Dependent Ion Channels

Janos Almassy and David I. Yule

PROTOCOLS

1 Studying the Activation of Epithelial Ion Channels Using Global Whole-Field Photolysis

Janos Almassy and David I. Yule

2 Investigating Ion Channel Distribution Using a Combination of Spatially Limited Photolysis, Ca2+ Imaging, and Patch-Clamp Recording

Janos Almassy and David I. Yule

3 Analyzing Ca2+ Dynamics in Intact Epithelial Cells Using Spatially Limited Flash Photolysis

Janos Almassy and David I. Yule

CHAPTER 5

INTRODUCTION

Electroporation Loading and Flash Photolysis to Investigate Intra- and Intercellular Ca2+ Signaling

Elke Decrock, Marijke De Bock, Nan Wang, Mélissa Bol, Ashish K. Gadicherla, and Luc Leybaert

PROTOCOLS

1 Electroporation Loading of Membrane-Impermeable Molecules to Investigate Intra- and Intercellular Ca2+ Signaling

Elke Decrock, Marijke De Bock, Nan Wang, Mélissa Bol, Ashish K. Gadicherla, and Luc Leybaert

2 Flash Photolysis of Caged IP\textsubscript{3} to Trigger Intercellular Ca2+ Waves

Elke Decrock, Marijke De Bock, Nan Wang, Mélissa Bol, Ashish K. Gadicherla, and Luc Leybaert

CHAPTER 6

INTRODUCTION

Investigating Calcium Signaling by Confocal and Multiphoton Microscopy

Lars Kaestner and Peter Lipp

PROTOCOLS

1 Two-Photon Photolysis Combined with a Kilobeam Array Scanner to Probe Calcium Signaling in Cardiomyocytes

Benjamin Sauer, Martin Oberhofer, Peter Lipp, and Lars Kaestner

2 Multibeam Two-Photon Imaging of Fast Ca2+ Signals in the Langendorff Mouse Heart

Karin Hammer, Peter Lipp, and Lars Kaestner
CHAPTER 7

INTRODUCTION
Combining Calcium Imaging with Other Optical Techniques
Marco Canepari, Dejan Zecevic, Kaspar E. Vogt, David Ogden, and Michel De Waard

PROTOCOLS
1 Combining Ca\(^{2+}\) and Membrane Potential Imaging in Single Neurons
Marco Canepari, Kaspar E. Vogt, Michel De Waard, and Dejan Zecevic

2 Combining Ca\(^{2+}\) Imaging with L-Glutamate Photorelease
Marco Canepari, Michel De Waard, and David Ogden

CHAPTER 8

INTRODUCTION
High-Throughput Analyses of IP\(_3\) Receptor Behavior
Colin W. Taylor, Stephen C. Tovey, and Ana M. Rossi

PROTOCOLS
1 High-Throughput Functional Assays of IP\(_3\)-Evoked Ca\(^{2+}\) Release
Stephen C. Tovey and Colin W. Taylor

2 High-Throughput Fluorescence Polarization Assay of Ligand Binding
to IP\(_3\) Receptors
Ana M. Rossi and Colin W. Taylor

SECTION 2. LUMINESCEENCE

CHAPTER 9

INTRODUCTION
The Use of Aequorin and Its Variants for Ca\(^{2+}\) Measurements
Veronica Granatiero, Maria Patron, Anna Tosatto, Giulia Merli, and Rosario Rizzuto

PROTOCOL
1 Using Targeted Variants of Aequorin to Measure Ca\(^{2+}\) Levels in Intracellular Organelles
Veronica Granatiero, Maria Patron, Anna Tosatto, Giulia Merli, and Rosario Rizzuto
CHAPTER 10

INTRODUCTION

Introduction of Aequorin into Zebrafish Embryos for Recording Ca²⁺ Signaling
during the First 48 h of Development

Sarah E. Webb, Ching Man Chan, and Andrew L. Miller

PROTOCOLS

1. Microinjecting Holo-Aequorin into Dechorionated and Intact Zebrafish Embryos
Sarah E. Webb and Andrew L. Miller

2. Reconstitution of Holo-Aequorin with Apoaequorin mRNA and Coelenterazine
in Zebrafish Embryos
Ching Man Chan, Andrew L. Miller, and Sarah E. Webb

SECTION 3. RADIOACTIVE TECHNIQUES

CHAPTER 11

INTRODUCTION

Measurement of Intracellular Ca²⁺ Release in Intact and Permeabilized
Cells Using ⁴⁵Ca²⁺

Ludwig Missiaen, Tomas Luyten, Geert Bultynck, Jan B. Parys,
and Humbert De Smedt

PROTOCOLS

1. Measurement of Intracellular Ca²⁺ Release in Permeabilized Cells
Using ⁴⁵Ca²⁺
Tomas Luyten, Geert Bultynck, Jan B. Parys, Humbert De Smedt, and Ludwig Missiaen

2. Measurement of Intracellular Ca²⁺ Release in Intact Cells Using ⁴⁵Ca²⁺
Tomas Luyten, Geert Bultynck, Jan B. Parys, Humbert De Smedt,
and Ludwig Missiaen

CHAPTER 12

INTRODUCTION

Measuring Ca²⁺ Pump Activity in Overexpression Systems and Cardiac
Muscle Preparations

Tine Holemans, Ilse Vandecaetsbeek, Frank Wuytack, and Peter Vangheluwe

PROTOCOLS

1. High-Throughput Measurement of the Ca²⁺-Dependent ATPase Activity
in COS Microsomes
Ilse Vandecaetsbeek, Tine Holemans, Frank Wuytack, and Peter Vangheluwe

2. Measuring Ca²⁺-Dependent Ca²⁺-Uptake Activity in the Mouse Heart
Tine Holemans, Ilse Vandecaetsbeek, Frank Wuytack, and Peter Vangheluwe
SECTION 4. ELECTROPHYSIOLOGY

CHAPTER 13

INTRODUCTION
Patch-Clip Recording of Voltage-Sensitive Ca$^{2+}$ Channels
Maria A. Gandini, Alejandro Sandoval, and Ricardo Felix

PROTOCOLS
1 Whole-Cell Patch-Clamp Recordings of Ca$^{2+}$ Currents from Isolated Neonatal Mouse Dorsal Root Ganglion (DRG) Neurons
Maria A. Gandini, Alejandro Sandoval, and Ricardo Felix

CHAPTER 14

INTRODUCTION
Patch-Clip Measurement of I_{CRAC} and ORAI Channel Activity
Dalia Alansary, Tatiana Kilch, Christian Holzmann, Christine Peinelt, Markus Hoth, and Annette Lis

PROTOCOLS
1 Measuring Endogenous I_{CRAC} and ORAI Currents with the Patch-Clamp Technique
Dalia Alansary, Tatiana Kilch, Christian Holzmann, Christine Peinelt, Markus Hoth, and Annette Lis

CHAPTER 15

INTRODUCTION
Patch-Clip Electrophysiology of Intracellular Ca$^{2+}$ Channels
Don-On Daniel Mak, Horia Vais, King-Ho Cheung, and J. Kevin Foskett

PROTOCOLS
1 Isolating Nuclei from Cultured Cells for Patch-Clip Electrophysiology of Intracellular Ca$^{2+}$ Channels
Don-On Daniel Mak, Horia Vais, King-Ho Cheung, and J. Kevin Foskett

2 Nuclear Patch-Clip Electrophysiology of Ca$^{2+}$ Channels
Don-On Daniel Mak, Horia Vais, King-Ho Cheung, and J. Kevin Foskett
CHAPTER 16

INTRODUCTION

Bilayer Measurement of Endoplasmic Reticulum Ca$^{2+}$ Channels

Ilya Bezprozvanny

321

PROTOCOLS

1 Preparation of Microsomes to Study Ca$^{2+}$ Channels

Ilya Bezprozvanny

326

2 Reconstitution of Endoplasmic Reticulum InsP$_3$ Receptors into Black Lipid Membranes

Ilya Bezprozvanny

330

CHAPTER 17

INTRODUCTION

Measurement of Mitochondrial Ca$^{2+}$ Transport Mediated by Three Transport Proteins: VDAC1, the Na$^+$/Ca$^{2+}$ Exchanger, and the Ca$^{2+}$ Uniporter

Danya Ben-Hail, Raz Palty, and Varda Shoshan-Barmatz

337

PROTOCOLS

1 Purification of VDAC1 from Rat Liver Mitochondria

Danya Ben-Hail and Varda Shoshan-Barmatz

343

2 Reconstitution of Purified VDAC1 into a Lipid Bilayer and Recording of Channel Conductance

Danya Ben-Hail and Varda Shoshan-Barmatz

349

3 Assay of Ca$^{2+}$ Transport by VDAC1 Reconstituted into Liposomes

Danya Ben-Hail and Varda Shoshan-Barmatz

355

4 Assays of Mitochondrial Ca$^{2+}$ Transport and Ca$^{2+}$ Efflux via the MPTP

Danya Ben-Hail and Varda Shoshan-Barmatz

359

5 Mitochondrial Na$^+$/Ca$^{2+}$ Exchange Assays

Raz Palty and Varda Shoshan-Barmatz

362

CHAPTER 18

INTRODUCTION

Calcium-Sensitive Mini- and Microelectrodes

Roger C. Thomas and Donald M. Bers

367

PROTOCOLS

1 How to Make Calcium-Sensitive Minielectrodes

Roger C. Thomas and Donald M. Bers

372

2 How to Make Calcium-Sensitive Microelectrodes

Roger C. Thomas and Donald M. Bers

376
SECTION 5. SPECIAL TISSUES

CHAPTER 19

INTRODUCTION
The Xenopus Oocyte: A Single-Cell Model for Studying Ca2+ Signaling
Yaping Lin-Moshier and Jonathan S. Marchant

PROTOCOLS
1 Nuclear Microinjection to Assess How Heterologously Expressed Proteins Impact Ca2+ Signals in Xenopus Oocytes
Yaping Lin-Moshier and Jonathan S. Marchant
2 A Rapid Western Blotting Protocol for the Xenopus Oocyte
Yaping Lin-Moshier and Jonathan S. Marchant

CHAPTER 20

PROTOCOL
Imaging and Manipulating Calcium Transients in Developing Xenopus Spinal Neurons
Nicholas C. Spitzer, Laura N. Borodinsky, and Cory M. Root

CHAPTER 21

INTRODUCTION
A Systematic Approach for Assessing Ca2+ Handling in Cardiac Myocytes
Karin R. Sipido, Niall Macquaide, and Virginie Bito

PROTOCOLS
1 Basic Methods for Monitoring Intracellular Ca2+ in Cardiac Myocytes Using Fluo-3
Virginie Bito, Karin R. Sipido, and Niall Macquaide
2 Characterizing the Trigger for Sarcoplasmic Reticulum Ca2+ Release in Cardiac Myocytes
Virginie Bito, Niall Macquaide, and Karin R. Sipido
3 Measuring Sarcoplasmic Reticulum Ca2+ Content, Fractional Release, and Ca2+ Buffering in Cardiac Myocytes
Niall Macquaide, Virginie Bito, and Karin R. Sipido
4 Measuring Ca2+ Sparks in Cardiac Myocytes
Niall Macquaide, Virginie Bito, and Karin R. Sipido
5 Assessing Ca2+-Removal Pathways in Cardiac Myocytes
Virginie Bito, Karin R. Sipido, and Niall Macquaide
CHAPTER 22

INTRODUCTION

Monitoring Ca$^{2+}$ Signaling in Yeast 445
Renata Tisi, Enzo Martegani, and Rogelio L. Brandão

PROTOCOLS

1 Monitoring Yeast Intracellular Ca$^{2+}$ Levels Using an In Vivo Bioluminescence Assay 456
Renata Tisi, Enzo Martegani, and Rogelio L. Brandão

2 Total Cellular Ca$^{2+}$ Measurements in Yeast Using Flame Photometry 460
Renata Tisi, Enzo Martegani, and Rogelio L. Brandão

3 Measurement of Calcium Uptake in Yeast Using 45Ca 463
Renata Tisi, Enzo Martegani, and Rogelio L. Brandão

CHAPTER 23

INTRODUCTION

Ca$^{2+}$ Imaging in Plants Using Genetically Encoded Yellow Cameleon Ca$^{2+}$ Indicators 465
Smrutisanjita Behera, Melanie Krebs, Giovanna Loro, Karin Schumacher, Alex Costa, and Jörg Kudla

PROTOCOLS

1 Live Cell Imaging of Cytoplasmic Ca$^{2+}$ Dynamics in Arabidopsis Guard Cells 469
Smrutisanjita Behera and Jörg Kudla

2 High-Resolution Imaging of Cytoplasmic Ca$^{2+}$ Dynamics in Arabidopsis Roots 474
Smrutisanjita Behera and Jörg Kudla

3 Live Cell Imaging of Cytoplasmic and Nuclear Ca$^{2+}$ Dynamics in Arabidopsis Roots 479
Melanie Krebs and Karin Schumacher

4 Imaging of Mitochondrial and Nuclear Ca$^{2+}$ Dynamics in Arabidopsis Roots 484
Giovanna Loro and Alex Costa

SECTION 6. NAD(P)-DERIVED MESSENGERS

CHAPTER 24

INTRODUCTION

Cyclic ADP-Ribose: Endogenous Content, Enzymology, and Ca$^{2+}$ Release 489
Andreas H. Guse, Tanja Kirchberger, and Santina Bruzzone
PROTOCOLS

1 Cycling Assay for Determining Intracellular Cyclic ADP-Ribose Levels
 Santina Bruzzone and Andreas H. Guse
 493

2 Measuring CD38 (ADP-Ribosyl Cyclase/Cyclic ADP-Ribose Hydrolase)
 Activity by Reverse-Phase HPLC
 Tanja Kirchberger and Andreas H. Guse
 498

3 Measuring Ca^{2+} Release Evoked by Cyclic ADP-Ribose
 Andreas H. Guse
 503

CHAPTER 25

INTRODUCTION

Methods in Nicotinic Acid Adenine Dinucleotide Phosphate Research
 Antony Galione, Kai-Ting Chuang, Tim M. Funnell, Lianne C. Davis, Anthony J. Morgan,
 Margarida Ruas, John Parrington, and Grant C. Churchill
 509

PROTOCOLS

1 Preparation and Use of Sea Urchin Egg Homogenates for Studying
 NAADP-Mediated Ca^{2+} Release
 Antony Galione, Kai-Ting Chuang, Tim M. Funnell, Lianne C. Davis,
 Anthony J. Morgan, Margarida Ruas, John Parrington, and Grant C. Churchill
 512

2 Synthesis of NAADP-AM as a Membrane-Permeant NAADP Analog
 Antony Galione, Kai-Ting Chuang, Tim M. Funnell, Lianne C. Davis,
 Anthony J. Morgan, Margarida Ruas, John Parrington, and Grant C. Churchill
 517

3 Measurement of Luminal pH of Acidic Stores as a Readout for
 NAADP Action
 Antony Galione, Kai-Ting Chuang, Tim M. Funnell, Lianne C. Davis,
 Anthony J. Morgan, Margarida Ruas, John Parrington, and Grant C. Churchill
 521

4 Synthesis of Caged NAADP
 Antony Galione, Kai-Ting Chuang, Tim M. Funnell, Lianne C. Davis,
 Anthony J. Morgan, Margarida Ruas, John Parrington, and Grant C. Churchill
 525

5 Synthesis of [^{32}P]NAADP for Radioreceptor Binding Assay
 Antony Galione, Kai-Ting Chuang, Tim M. Funnell, Lianne C. Davis,
 Anthony J. Morgan, Margarida Ruas, John Parrington, and Grant C. Churchill
 529

SECTION 7. MEASURING AND MODELING CA^{2+} DYNAMICS

CHAPTER 26

INTRODUCTION

Measuring Ca^{2+}-Binding Kinetics of Proteins
 Guido C. Faas and Istvan Mody
 533

PROTOCOLS

1 Measuring the Steady-State Properties of Ca^{2+} Indicators with a Set of Calibrated
 [Ca^{2+}] Solutions
 Guido C. Faas and Istvan Mody
 536
2 Measuring the Rate Constants of Ca$^{2+}$ Indicators
Guido C. Faas and Istvan Mody

541

3 Collecting Data to Determine the Ca$^{2+}$-Binding Properties of DM-Nitrophen and Proteins
Guido C. Faas and Istvan Mody

546

CHAPTER 27

INTRODUCTION

Translating Intracellular Calcium Signaling into Models
Rudiger Thul

553

PROTOCOLS

1 Exploring Oscillations in a Point Model of the Intracellular Ca$^{2+}$ Concentration
Rudiger Thul

562

2 Time to Blip—Stochastic Simulation of Single Channel Opening
Rudiger Thul

566

APPENDIX 1

General Safety and Hazardous Material Information

571

Index

577

General Safety and Hazardous Material Information

This manual should be used by laboratory personnel with experience in laboratory and chemical safety or students under the supervision of such trained personnel. The procedures, chemicals, and equipment referenced in this manual are hazardous and can cause serious injury unless performed, handled, and used with care and in a manner consistent with safe laboratory practices. Students and researchers using the procedures in this manual do so at their own risk. It is essential for your safety that you consult the appropriate Material Safety Data Sheets, the manufacturers’ manuals accompanying equipment, and your institution’s Environmental Health and Safety Office, as well as the General Safety and Disposal Cautions in this appendix for proper handling of hazardous materials in this manual. Cold Spring Harbor Laboratory makes no representations or warranties with respect to the material set forth in this manual and has no liability in connection with the use of these materials.

All registered trademarks, trade names, and brand names mentioned in this book are the property of the respective owners. Readers should please consult individual manufacturers and other resources for current and specific product information.

Appropriate sources for obtaining safety information and general guidelines for laboratory safety are provided in General Safety and Hazardous Material Information (Appendix 1 of this manual).