CIVIL AVIONICS SYSTEMS

Second Edition

Ian Moir
Aerospace Consultant, UK

Allan Seabridge
Aerospace Consultant, UK

Malcolm Jukes
Aerospace Consultant, UK

WILEY
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 Binary Arithmetic</td>
<td>29</td>
</tr>
<tr>
<td>2.5.1 Binary Notations</td>
<td>29</td>
</tr>
<tr>
<td>2.5.2 Binary Addition, Subtraction, Multiplication and Division</td>
<td>32</td>
</tr>
<tr>
<td>2.5.3 The Arithmetic Logic Unit</td>
<td>32</td>
</tr>
<tr>
<td>2.6 The Central Processing Unit (CPU)</td>
<td>34</td>
</tr>
<tr>
<td>2.6.1 CPU Instruction Format</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2 Instruction Execution Sequence</td>
<td>35</td>
</tr>
<tr>
<td>2.6.3 Extended Operand Addressing Modes</td>
<td>42</td>
</tr>
<tr>
<td>2.7 Software</td>
<td>43</td>
</tr>
<tr>
<td>2.7.1 Software Introduction</td>
<td>43</td>
</tr>
<tr>
<td>2.7.2 Assemblers and Compilers</td>
<td>43</td>
</tr>
<tr>
<td>2.7.3 Software Engineering</td>
<td>44</td>
</tr>
<tr>
<td>2.7.4 Software Design Process Assurance</td>
<td>45</td>
</tr>
<tr>
<td>2.7.5 Languages</td>
<td>47</td>
</tr>
<tr>
<td>2.7.6 Object-Oriented Design</td>
<td>49</td>
</tr>
<tr>
<td>2.7.7 Auto-code Generation</td>
<td>50</td>
</tr>
<tr>
<td>2.7.8 Real-Time Operating System (RTOS)</td>
<td>51</td>
</tr>
<tr>
<td>2.8 Microprocessors</td>
<td>53</td>
</tr>
<tr>
<td>2.8.1 Moore's Law</td>
<td>53</td>
</tr>
<tr>
<td>2.8.2 Significant Microprocessors used in Aerospace Applications</td>
<td>54</td>
</tr>
<tr>
<td>2.8.3 CPU Cache</td>
<td>57</td>
</tr>
<tr>
<td>2.8.4 Microcontrollers</td>
<td>58</td>
</tr>
<tr>
<td>2.8.5 Rock's Law</td>
<td>59</td>
</tr>
<tr>
<td>2.9 Memory Technologies</td>
<td>59</td>
</tr>
<tr>
<td>2.9.1 Desired Avionics Memory Attributes</td>
<td>60</td>
</tr>
<tr>
<td>2.9.2 Available Memory Technology Attributes</td>
<td>60</td>
</tr>
<tr>
<td>2.9.3 Memory Device Summary</td>
<td>64</td>
</tr>
<tr>
<td>2.9.4 Memory Hierarchy</td>
<td>64</td>
</tr>
<tr>
<td>2.10 Application-Specific Integrated Circuits (ASICs)</td>
<td>64</td>
</tr>
<tr>
<td>2.10.1 Main Types of ASICs</td>
<td>64</td>
</tr>
<tr>
<td>2.10.2 Field Programmable Gate Array (FPGA)</td>
<td>66</td>
</tr>
<tr>
<td>2.10.3 Semi-custom Standard Cell Design ASIC</td>
<td>68</td>
</tr>
<tr>
<td>2.10.4 Design Tools</td>
<td>68</td>
</tr>
<tr>
<td>2.10.5 RTCA-DO-254/ED 80</td>
<td>69</td>
</tr>
<tr>
<td>2.11 Integrated Circuits</td>
<td>70</td>
</tr>
<tr>
<td>2.11.1 Logic Functions</td>
<td>70</td>
</tr>
<tr>
<td>2.11.2 The MOS Field Effect Transistor (MOSFET)</td>
<td>70</td>
</tr>
<tr>
<td>2.11.3 IC Fabrication</td>
<td>70</td>
</tr>
<tr>
<td>2.12 Integrated Circuit Packaging</td>
<td>73</td>
</tr>
<tr>
<td>2.12.1 Wafer Probe and Test</td>
<td>74</td>
</tr>
<tr>
<td>2.12.2 Wafer Separation and Die Attachment</td>
<td>74</td>
</tr>
<tr>
<td>2.12.3 Wire Bonding</td>
<td>75</td>
</tr>
<tr>
<td>2.12.4 Packaging</td>
<td>75</td>
</tr>
<tr>
<td>References</td>
<td>77</td>
</tr>
</tbody>
</table>
3 Data Bus Networks

3.1 Introduction

3.2 Digital Data Bus Basics
  3.2.1 Data Bus Overview
  3.2.2 Bit Encoding
  3.2.3 Attributes
  3.2.4 Transmission Classes
  3.2.5 Topologies
  3.2.6 Transmission Rates

3.3 Transmission Protocols
  3.3.1 Transmission Protocols Overview
  3.3.2 Time-Slot Allocation Protocol
  3.3.3 Command/Response Protocol
  3.3.4 Token Passing Protocol
  3.3.5 Contention Protocol

3.4 ARINC 429
  3.4.1 ARINC 429 Overview
  3.4.2 ARINC 429 Architecture Realisation

3.5 MIL-STD-1553B
  3.5.1 MIL-STD-1553B Overview
  3.5.2 MIL-STD-1553B Word Formats
  3.5.3 Bus Controller to Remote Terminal (BC-RT) Protocol
  3.5.4 Remote Terminal to Bus Controller (RT-BC) Protocol
  3.5.5 Remote Terminal to Remote Terminal (RT-RT) Protocol
  3.5.6 Broadcast Protocol
  3.5.7 Error Management

3.6 ARINC 629
  3.6.1 ARINC 629 Overview
  3.6.2 ARINC 629 Protocol
  3.6.3 ARINC 629 Bus Coupler
  3.6.4 ARINC 629 Architecture Realisation

3.7 ARINC 664 Part 7
  3.7.1 ARINC 664 Overview
  3.7.2 Ethernet Frame Format
  3.7.3 Network Topology
  3.7.4 Contention Avoidance
  3.7.5 Virtual Links
  3.7.6 Protocol
  3.7.7 Summary
  3.7.8 Cables

3.8 CANbus
  3.8.1 CANbus Overview
  3.8.2 CANbus Message Formats
  3.8.3 CANbus Variants

3.9 Time Triggered Protocol

3.10 Fibre-optic Data Communications
3.10.1 Attributes of Fibre-optic Data Transmission 113
3.10.2 Physical Implementation 114
3.11 Data Bus Summary 115
3.11.1 Data Bus Overview 115
3.11.2 Contrasting Traffic Management Techniques 117
References 118

4 System Safety 119
4.1 Introduction 119
4.2 Flight Safety 120
4.2.1 Introduction 120
4.2.2 Flight Safety Overview 120
4.2.3 Accident Causes 124
4.3 System Safety Assessment 124
4.3.1 Introduction 124
4.3.2 Key Agencies, Documents and Guidelines 125
4.3.3 Failure Classification 126
4.3.4 In-Service Experience 127
4.3.5 Safety Assessment Processes 127
4.4 Reliability 128
4.4.1 Introduction 128
4.4.2 Failure Mechanisms 128
4.4.3 The Relationship between Probability and Mean Time between Failures 130
4.4.4 Assessment of Failure Probability 132
4.4.5 Reliability Management 133
4.5 Availability 134
4.5.1 Introduction 134
4.5.2 Classic Probability Theory 135
4.5.3 Simplex Architecture 135
4.5.4 Triplex Architecture 136
4.5.5 Triplex Architecture plus Backup 136
4.6 Integrity 138
4.6.1 Built-in-Test 139
4.6.2 Cross-Monitoring 140
4.7 Redundancy 141
4.7.1 Simplex Architecture 142
4.7.2 Duplex Architecture 142
4.7.3 Dual Command: Monitor Architecture 143
4.7.4 Triplex Architecture 145
4.7.5 Quadruplex Architecture 146
4.7.6 Summary 147
4.8 Analysis Methods 148
4.8.1 Top-Down Methods 148
4.8.2 Bottom-Up Methods 149
4.8.3 Lighting System Example 149
### 4.9 Other Considerations

- **4.9.1 Exposure Time (Time at Risk)**
- **4.9.2 Cascade and Common Mode Faults**
- **4.9.3 Dissimilarity**
- **4.9.4 Segregation and Partitioning**
- **4.9.5 Dispatch Availability**

### References

### 5 Avionics Architectures

- **5.1 Introduction**
- **5.2 Avionics Architecture Evolution**
  - **5.2.1 Overview of Architecture Evolution**
  - **5.2.2 Distributed Analogue Architecture**
  - **5.2.3 Distributed Digital Architecture**
  - **5.2.4 Federated Digital Architecture**
  - **5.2.5 Integrated Modular Avionics**
  - **5.2.6 Open System Standards**
- **5.3 Avionic Systems Domains**
  - **5.3.1 The Aircraft as a System of Systems**
  - **5.3.2 ATA Classification**
- **5.4 Avionics Architecture Examples**
  - **5.4.1 The Manifestations of IMA**
  - **5.4.2 The Airbus A320 Avionics Architecture**
  - **5.4.3 The Boeing 777 Avionics Architecture**
  - **5.4.4 Honeywell EPIC Architecture**
  - **5.4.5 The Airbus A380 and A350**
  - **5.4.6 The Boeing 787**
- **5.5 IMA Design Principles**
- **5.6 The Virtual System**
  - **5.6.1 Introduction to Virtual Mapping**
  - **5.6.2 Implementation Example: Airbus A380**
  - **5.6.3 Implementation Example: Boeing 787**
- **5.7 Partitioning**
- **5.8 IMA Fault Tolerance**
  - **5.8.1 Fault Tolerance Principles**
  - **5.8.2 Data Integrity**
  - **5.8.3 Platform Health Management**
- **5.9 Network Definition**
- **5.10 Certification**
  - **5.10.1 IMA Certification Philosophy**
  - **5.10.2 Platform Acceptance**
  - **5.10.3 Hosted Function Acceptance**
  - **5.10.4 Cost of Change**
  - **5.10.5 Configuration Management**
- **5.11 IMA Standards**

### References
## Systems Development

### 6.1 Introduction

- **6.1.1 Systems Design**
- **6.1.2 Development Processes**

### 6.2 System Design Guidelines

- **6.2.1 Key Agencies and Documentation**
- **6.2.2 Design Guidelines and Certification Techniques**
- **6.2.3 Guidelines for Development of Civil Aircraft and Systems – SAE ARP 4754A**
- **6.2.4 Guidelines and Methods for Conducting the Safety Assessment – SAE ARP 4761**
- **6.2.5 Software Considerations – RTCA DO-178B**
- **6.2.6 Hardware Development – RTCA DO-254**
- **6.2.7 Integrated Modular Avionics – RTCA DO-297**
- **6.2.8 Equivalence of US and European Specifications**

### 6.3 Interrelationship of Design Processes

- **6.3.1 Functional Hazard Assessment (FHA)**
- **6.3.2 Preliminary System Safety Assessment (PSSA)**
- **6.3.3 System Safety Assessment (SSA)**
- **6.3.4 Common Cause Analysis (CCA)**

### 6.4 Requirements Capture and Analysis

- **6.4.1 Top-Down Approach**
- **6.4.2 Bottom-Up Approach**
- **6.4.3 Requirements Capture Example**

### 6.5 Development Processes

- **6.5.1 The Product Life-Cycle**
- **6.5.2 Concept Phase**
- **6.5.3 Definition Phase**
- **6.5.4 Design Phase**
- **6.5.5 Build Phase**
- **6.5.6 Test Phase**
- **6.5.7 Operate Phase**
- **6.5.8 Disposal or Refurbish Phase**

### 6.6 Development Programme

- **6.6.1 Typical Development Programme**
- **6.6.2 ‘V’ Diagram**

### 6.7 Extended Operations Requirements

- **6.7.1 ETOPS Requirements**
- **6.7.2 Equipment Requirements**

### 6.8 ARINC Specifications and Design Rigour

- **6.8.1 ARINC 400 Series**
- **6.8.2 ARINC 500 Series**
- **6.8.3 ARINC 600 Series**
- **6.8.4 ARINC 700 Series**
- **6.8.5 ARINC 800 Series**
- **6.8.6 ARINC 900 Series**
6.9 Interface Control 231
6.9.1 Introduction 231
6.9.2 Interface Control Document 231
6.9.3 Aircraft-Level Data-Bus Data 231
6.9.4 System Internal Data-Bus Data 233
6.9.5 Internal System Input/Output Data 233
6.9.6 Fuel Component Interfaces 233
References 233

7 Electrical Systems 235
7.1 Electrical Systems Overview 235
7.1.1 Introduction 235
7.1.2 Wider Development Trends 236
7.1.3 Typical Civil Electrical System 238
7.2 Electrical Power Generation 239
7.2.1 Generator Control Function 239
7.2.2 DC System Generation Control 240
7.2.3 AC Power Generation Control 242
7.3 Power Distribution and Protection 248
7.3.1 Electrical Power System Layers 248
7.3.2 Electrical System Configuration 248
7.3.3 Electrical Load Protection 250
7.3.4 Power Conversion 253
7.4 Emergency Power 254
7.4.1 Ram Air Turbine 255
7.4.2 Permanent Magnet Generators 256
7.4.3 Backup Systems 257
7.4.4 Batteries 258
7.5 Power System Architectures 259
7.5.1 Airbus A320 Electrical System 259
7.5.2 Boeing 777 Electrical System 261
7.5.3 Airbus A380 Electrical System 264
7.5.4 Boeing 787 Electrical System 265
7.6 Aircraft Wiring 268
7.6.1 Aircraft Breaks 269
7.6.2 Wiring Bundle Definition 270
7.6.3 Wiring Routing 271
7.6.4 Wiring Sizing 272
7.6.5 Aircraft Electrical Signal Types 272
7.6.6 Electrical Segregation 274
7.6.7 The Nature of Aircraft Wiring and Connectors 274
7.6.8 Used of Twisted Pairs and Quads 275
7.7 Electrical Installation 276
7.7.1 Temperature and Power Dissipation 278
7.7.2 Electromagnetic Interference 278
7.7.3 Lightning Strikes 280
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8</td>
<td>Bonding and Earthing</td>
<td>280</td>
</tr>
<tr>
<td>7.9</td>
<td>Signal Conditioning</td>
<td>282</td>
</tr>
<tr>
<td>7.9.1</td>
<td>Signal Types</td>
<td>282</td>
</tr>
<tr>
<td>7.9.2</td>
<td>Signal Conditioning</td>
<td>283</td>
</tr>
<tr>
<td>7.10</td>
<td>Central Maintenance Systems</td>
<td>284</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Airbus A330/340 Central Maintenance System</td>
<td>285</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Boeing 777 Central Maintenance Computing System</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>290</td>
</tr>
<tr>
<td>8</td>
<td>Sensors</td>
<td>291</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>8.2</td>
<td>Air Data Sensors</td>
<td>292</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Air Data Parameters</td>
<td>292</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Pressure Sensing</td>
<td>292</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Temperature Sensing</td>
<td>292</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Use of Pressure Data</td>
<td>294</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Pressure Datum Settings</td>
<td>295</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Air Data Computers (ADCs)</td>
<td>297</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Airstream Direction Detectors</td>
<td>299</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Total Aircraft Pitot-Static System</td>
<td>300</td>
</tr>
<tr>
<td>8.3</td>
<td>Magnetic Sensors</td>
<td>301</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Magnetic Field Components</td>
<td>302</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Magnetic Variation</td>
<td>303</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Magnetic Heading Reference System</td>
<td>305</td>
</tr>
<tr>
<td>8.4</td>
<td>Inertial Sensors</td>
<td>306</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Introduction</td>
<td>306</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Position Gyroscopes</td>
<td>306</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Rate Gyroscopes</td>
<td>306</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Accelerometers</td>
<td>308</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Inertial Reference Set</td>
<td>309</td>
</tr>
<tr>
<td>8.4.6</td>
<td>Platform Alignment</td>
<td>312</td>
</tr>
<tr>
<td>8.4.7</td>
<td>Gimballed Platform</td>
<td>315</td>
</tr>
<tr>
<td>8.4.8</td>
<td>Strap-Down System</td>
<td>317</td>
</tr>
<tr>
<td>8.5</td>
<td>Combined Air Data and Inertial</td>
<td>317</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Evolution of Combined Systems</td>
<td>317</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Boeing 777 Example</td>
<td>319</td>
</tr>
<tr>
<td>8.5.4</td>
<td>ADIRS Data-Set</td>
<td>320</td>
</tr>
<tr>
<td>8.5.5</td>
<td>Further System Integration</td>
<td>320</td>
</tr>
<tr>
<td>8.6</td>
<td>Radar Sensors</td>
<td>323</td>
</tr>
<tr>
<td>8.6.1</td>
<td>Radar Altimeter</td>
<td>323</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Weather Radar</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>327</td>
</tr>
</tbody>
</table>
9 Communications and Navigation Aids 329
9.1 Introduction 329
9.1.1 Introduction and RF Spectrum 329
9.1.2 Equipment 331
9.1.3 Antennae 332
9.2 Communications 332
9.2.1 Simple Modulation Techniques 332
9.2.2 HF Communications 335
9.2.3 VHF Communications 337
9.2.4 SATCOM 339
9.2.5 Air Traffic Control (ATC) Transponder 342
9.2.6 Traffic Collision Avoidance System (TCAS) 345
9.3 Ground-Based Navigation Aids 347
9.3.1 Introduction 347
9.3.2 Non-Directional Beacon 348
9.3.3 VHF Omni-Range 348
9.3.4 Distance Measuring Equipment 348
9.3.5 TACAN 350
9.3.6 VOR/TAC 350
9.4 Instrument Landing Systems 350
9.4.1 Overview 350
9.4.2 Instrument Landing System 351
9.4.3 Microwave Landing System 354
9.4.4 GNSS Based Systems 354
9.5 Space-Based Navigation Systems 354
9.5.1 Introduction 354
9.5.2 Global Positioning System 355
9.5.3 GLONASS 358
9.5.4 Galileo 359
9.5.5 COMPASS 359
9.5.6 Differential GPS 360
9.5.7 Wide Area Augmentation System (WAAS/SBAS) 360
9.5.8 Local Area Augmentation System (LAAS/LBAS) 360
9.6 Communications Control Systems 362
References 363

10 Flight Control Systems 365
10.1 Principles of Flight Control 365
10.1.1 Frame of Reference 365
10.1.2 Typical Flight Control Surfaces 366
10.2 Flight Control Elements 368
10.2.1 Interrelationship of Flight Control Functions 368
10.2.2 Flight Crew Interface 370
10.3 Flight Control Actuation 371
10.3.1 Conventional Linear Actuation 372
10.3.2 Linear Actuation with Manual and Autopilot Inputs 372
10.3.3 Screwjack Actuation 373
10.3.4 Integrated Actuation Package 374
10.3.5 FBW and Direct Electrical Link 376
10.3.6 Electrohydrostatic Actuation (EHA) 377
10.3.7 Electromechanical Actuation (EMA) 378
10.3.8 Actuator Applications 379

10.4 Principles of Fly-By-Wire 379
10.4.1 Fly-By-Wire Overview 379
10.4.2 Typical Operating Modes 380
10.4.3 Boeing and Airbus Philosophies 382

10.5 Boeing 777 Flight Control System 383
10.5.1 Top Level Primary Flight Control System 383
10.5.2 Actuator Control Unit Interface 384
10.5.3 Pitch and Yaw Channel Overview 386
10.5.4 Channel Control Logic 387
10.5.5 Overall System Integration 389

10.6 Airbus Flight Control Systems 389
10.6.1 Airbus FBW Evolution 389
10.6.2 A320 FBW System 391
10.6.3 A330/340 FBW System 393
10.6.4 A380 FBW System 394

10.7 Autopilot Flight Director System 396
10.7.1 Autopilot Principles 396
10.7.2 Interrelationship with the Flight Deck 398
10.7.3 Automatic Landing 400

10.8 Flight Data Recorders 401
10.8.1 Principles of Flight Data Recording 401
10.8.2 Data Recording Environments 403
10.8.3 Future Requirements 403

References 404

11 Navigation Systems 405

11.1 Principles of Navigation 405
11.1.1 Basic Navigation 405
11.1.2 Navigation using Ground-Based Navigation Aids 407
11.1.3 Navigation using Air Data and Inertial Navigation 408
11.1.5 Flight Technical Error – Lateral Navigation 411
11.1.6 Flight Technical Error – Vertical Navigation 412

11.2 Flight Management System 413
11.2.1 Principles of Flight Management Systems (FMS) 413
11.2.2 FMS Crew Interface – Navigation Display 414
11.2.3 FMS Crew Interface – Control and Display Unit 417
11.2.4 FMS Functions 420
11.2.5 FMS Procedures 421
11.2.6 Standard Instrument Departure 423
11.2.7 En-Route Procedures 423
11.2.8 Standard Terminal Arrival Routes 424
11.2.9 ILS Procedures 427
11.2.10 Typical FMS Architecture 427
11.3 Electronic Flight Bag 427
11.3.1 EFB Functions 427
11.3.2 EFB Implementation 429
11.4 Air Traffic Management 430
11.4.1 Aims of Air Traffic Management 430
11.4.2 Communications, Navigation, Surveillance 430
11.4.3 NextGen 431
11.4.4 Single European Sky ATM Research (SESAR) 432
11.5 Performance-Based Navigation 433
11.5.1 Performance-Based Navigation Definition 433
11.5.2 Area Navigation (RNAV) 434
11.5.3 Required Navigation Performance (RNP) 438
11.5.4 Precision Approaches 440
11.6 Automatic Dependent Surveillance – Broadcast 442
11.7 Boeing and Airbus Implementations 442
11.7.1 Boeing Implementation 442
11.7.2 Airbus Implementation 444
11.8 Terrain Avoidance Warning System (TAWS) 444
References 447
Historical References (in Chronological Order) 447

12 Flight Deck Displays 449
12.1 Introduction 449
12.2 First Generation Flight Deck: the Electromagnetic Era 450
12.2.1 Embryonic Primary Flight Instruments 450
12.2.2 The Early Pioneers 451
12.2.3 The ‘Classic’ Electromechanical Flight Deck 453
12.3 Second Generation Flight Deck: the Electro-Optic Era 455
12.3.1 The Advanced Civil Flight Deck 455
12.3.2 The Boeing 757 and 767 456
12.3.3 The Airbus A320, A330 and A340 457
12.3.4 The Boeing 747-400 and 777 458
12.3.5 The Airbus A380 460
12.3.6 The Boeing 787 461
12.3.7 The Airbus A350 462
12.4 Third Generation: the Next Generation Flight Deck 463
12.4.1 Loss of Situational Awareness in Adverse Operational Conditions 463
12.4.2 Research Areas 463
12.4.3 Concepts 464
12.5 Electronic Centralised Aircraft Monitor (ECAM) System 465
12.5.1 ECAM Scheduling 465
12.5.2 ECAM Moding 465
Contents

12.5.3 ECAM Pages 466
12.5.4 Qantas Flight QF32 466
12.5.5 The Boeing Engine Indicating and Crew Alerting System (EICAS) 468

12.6 Standby Instruments 468

12.7 Head-Up Display Visual Guidance System (HVGS) 469
12.7.1 Introduction to Visual Guidance Systems 469
12.7.2 HVGS on Civil Transport Aircraft 470
12.7.3 HVGS Installation 470
12.7.4 HVGS Symbology 471

12.8 Enhanced and Synthetic Vision Systems 473
12.8.1 Overview 473
12.8.2 EVS, EFVS and SVS Architecture Diagrams 474
12.8.3 Minimum Aviation System Performance Standard (MASPS) 474
12.8.4 Enhanced Vision Systems (EVS) 474
12.8.5 Enhanced Flight Vision Systems (EFVS) 478
12.8.6 Synthetic Vision Systems (SVS) 481
12.8.7 Combined Vision Systems 484

12.9 Display System Architectures 486
12.9.1 Airworthiness Regulations 486
12.9.2 Display Availability and Integrity 486
12.9.3 Display System Functional Elements 487
12.9.4 Dumb Display Architecture 488
12.9.5 Semi-Smart Display Architecture 490
12.9.6 Fully Smart (Integrated) Display Architecture 490

12.10 Display Usability 491
12.10.1 Regulatory Requirements 491
12.10.2 Display Format and Symbology Guidelines 492
12.10.3 Flight Deck Geometry 492
12.10.4 Legibility: Resolution, Symbol Line Width and Sizing 494
12.10.5 Colour 494
12.10.6 Ambient Lighting Conditions 496

12.11 Display Technologies 498
12.11.1 Active Matrix Liquid Crystal Displays (AMLCD) 499
12.11.2 Plasma Panels 501
12.11.3 Organic Light-Emitting Diodes (O-LED) 501
12.11.4 Electronic Paper (e-paper) 502
12.11.5 Micro-Projection Display Technologies 503
12.11.6 Head-Up Display Technologies 504
12.11.7 Inceptors 505

12.12 Flight Control Inceptors 506
12.12.1 Handling Qualities 507
12.12.2 Response Types 507
12.12.3 Envelope Protection 508
12.12.4 Inceptors 508

References 509