Battery Power Management for Portable Devices

Yevgen Barsukov Jinrong Qian

Contents

	Preface	
	Acknowledgments	xiii
	Foreword	χv
l	Battery Chemistry Fundamentals and Characteristics	1
1.1	Introduction	1
1.2	Battery Fundamentals and Electrical Behavior Under DC and Transient Conditions	2
1.3	General Battery Characteristics	8
1.3.1	Chemical Capacity and Energy	8
1.3.2	Battery Impedance	9
1.3.3	Usable Capacity	12
1.3.4	Power Capability and the Ragone Plot	14
1.3.5	Durability, Cycle Life, and Shelf-Life	15
1.3.6	Self-Discharge Properties	17
1.4	Monitoring and Safety	19
1.5	Overview of Different Battery Technologies	22
1.5.1	Lead Acid	22
1.5.2	Nickel Cadmium	27
1.5.3	Nickel Metal-Hydride	31
1.5.4	Lithium Ion Battery	34

1.5.5	Battery Chemistries Overview	43
	References	43
2	Battery Charger Techniques	45
2.1	Lead-Acid Battery Charger	45
2.2	NiCd and NiMH Battery Charger	47
2.2.1	Nickel-Based Battery Charge Characteristics and Charge Profile	47
2.2.2	NiMH Battery Charger Design Example	49
2.3	Li-Ion and Li-Polymer Battery Charger	50
2.3.1	Li-Ion and Li-Polymer Charge Characteristics	<i>-</i> م
222	and Principle	50
2.3.2	Charge Temperature Qualification and JEITA Guideline	53
2.3.3	Linear Battery Charger	55
2.3.4	Switch-Mode Battery Charger	58
2.3.5 2.3.6	Switch-Mode Battery Charger Design Example	61
2.3.7	USB Battery Charging Port Detecting and Self-Enumerating Charger	63 65
2.4	Battery Charger and System Interactions	65
2.5	Dynamic Power Management Battery Charger	67
2.5.1	System Bus Voltage-Based Dynamic Power Path	
	Management (DPPM) Charger	67
2.5.2	Input Current-Based Dynamic Power Management	
	(DPM) Linear Charger	70
2.5.3	Switch-Mode DPM Battery Charger with Power Source Selector	
2.5.4	Narrow Voltage Direct Current (NVDC) DPM Battery	73
2.5.1	Charger	76
2.5.5	Battery Charging System Topology Comparisons	78
2.6	Battery Charger Design Examples in End Equipment	78
2.6.1	Tablet Charger Design Example	78
2.6.2	Notebook and Ultrabook Battery Charger Design Example	80
0.7	•	
2.7	LiFePO ₄ Battery Charger	85
2.8	Wireless Charging Technology	87

Contents	vi

2.9	Solar Charging System	88
	References	91
3	Battery Safety and Protections	93
3.1	Introduction	93
3.2	Safety Events Triggered External to the Battery Pack	97
3.2.1	Overvoltage Applied to a Battery Pack	97
3.2.2	Overdischarge	98
3.2.3	Overcurrent During Discharge	99
3.2.4	Overcurrent During Charge	101
3.3	Safety Events Triggered Inside the Battery Pack	102
3.3.1	Pack Internal Short Circuit	103
3.3.2	Cell Overvoltage	104
3.3.3	Cell Internal Short Circuit	106
3.4	Final Thoughts	109
	References	110
4	Cell-Balancing Techniques: Theory and	
	Implementation	111
4.1	Introduction	111
4.2	Types of Battery Cell Imbalance That Affect the	110
	Charge/Discharge Voltage	112
4.2.1	State-of-Charge (SOC) Imbalance	112
4.2.2	Total Capacity Differences	115
4.2.3	Impedance Differences	118
4.3	Effect of Imbalancing on Performance	122
4.3.1	Premature Cell Degradation Through Exposure to	
422	Overvoltage	122
4.3.2	Safety Hazards Resulting from Overcharged Cells	123
4.3.3	Early Charge Termination Resulting in Reduced Capacity	122
4.3.4	Early Discharge Termination	123 124
		127
4.4	Hardware Implementation of Balancing	125
4.4.1 4.4.2	Current Bypass	125
	Charge Redistribution	

4.4.3 4.4.4	Charge Shuttles	128
4.4.4	Inductive Converter-Based Cell Balancing	129
4.5	Balancing Algorithms	133
4.5.1	Cell Voltage Based	134
4.5.2	SOC Based	135
4.5.3	SOC and Total Capacity Based	137
4.6	Summary	137
5	Battery Fuel Gauging: State of Charge, Remaining	120
	Capacity, and State of Health Indication	139
5.1	Introduction	139
5.2	State of Charge and Accuracy Definitions	143
5.3	Basic Battery Remaining Capacity Monitoring Methods	147
5.3.1	Voltage Correlation	147
5.3.2	Voltage Correlation with IR Correction	148
5.3.3	Hardware Implementation of Voltage Correlation	150
5.3.4	Coulomb Counting: Current Integration Method	151
5.3.5	Coulomb Counting with Voltage-Based Early Learning	155
5.3.6	Hardware Implementation of Coulomb Counting	
	Gauging	157
5.4	Advanced Gauging Methods: Impedance Track™	158
5.4.1	Basic Concept	158
5.4.2	Voltage Correlation in IT	159
5.4.3	Full Chemical Capacity (Q_{max}) Update in IT	160
5.4.4	Battery Impedance Update in IT	162
5.4.5	Thermal Modeling to Account for Temperature	
	Effects on Usable Capacity	164
5.4.6	Load Modeling	166
5.4.7	Bringing It All Together: Predicting Usable Capacity	
	and Energy for Present Conditions	167
5.4.8	State of Health	169
5.4.9	Hardware Implementation of IT Algorithm	171
5.5	Host-Side and Pack-Side Gauging	171
5.6	Summary	173

ix

6	System Considerations	<u> 175</u>
6.1	Introduction	175
6.2	Battery Pack Electronics: General Considerations	175
6.3	Battery Pack ESD Design Considerations	177
6.3.1	ESD Fundamentals	177
6.3.2	Where Does the Current Flow During ESD Hits?	178
6.3.3	ESD Design Hardening	181
6.3.4	Pack Insertion Issues	184
6.4	Electromagnetic Interference (EMI) Solutions	185
6.4.1	EMI Solutions in the Battery Management Unit	185
6.4.2	EMI Design Considerations in Battery Charging	
	System Applications	187
6.4.3	Measuring the EMI	188
6.4.4	Conducted EMI	190
6.4.5	Approach for Minimizing Conducted Differential Noise	192
6.4.6	Approach for Minimizing Common Mode EMI Noise	193
6.4.7	Minimizing the Radiated EMI	197
6.5	Power Components and PCB Thermal Design	
	Considerations	199
6.6	Assuring That an Intended Battery Is Used with the	
	Device: Authentication	201
	References	206
7	Design Examples: Complete Battery Solutions for	007
	Specific Portable Systems	207
7.1	Introduction	207
7.2	Cell Phones and Smartphones	208
7.2.1	Battery Selection	208
7.2.2	Battery Pack Electronics	211
7.2.3	Battery Charging	215
7.3	Tablet Computers	215
7.3.1	Battery Pack Electronics	217
7.3.2	Battery Charging	218

	Index	239
	About the Authors	237
7.8	Conclusion	235
7.7.3	Battery Charging	235
7.7.2	Battery Pack Electronics	233
7.7.1	Battery Selection	232
7.7	Industrial and Medical Handheld Devices	232
7.6.2	Battery Charging	232
7.6.1	Battery Pack Electronics	231
7.6	Digital Cameras	229
7.5.4	Ultrabook Battery Charger Design Example	227
7.5.3	Charging and Power Architecture	224
7.5.2	Battery Pack Electronics	224
7.5.1	Battery Selection	222
7.5	Ultrabooks	222
7.4.3	Battery Charging	222
7.4.2	Battery Pack Electronics	220
7.4.1	Battery Selection	218
7.4	Notebook PCs	218