Nanoscale investigation of potential distribution in operating Cu(In,Ga)Se$_2$ thin-film solar cells

by
Zhenhao Zhang
Contents

Publications ... i

1 **Introduction** .. 1

2 **Cu(In,Ga)Se\(_2\)** thin-film solar cells 7
 2.1 Historical background ... 7
 2.2 Fabrication of Cu(In,Ga)Se\(_2\) thin-film solar cells 10
 2.2.1 Solar cell structure .. 10
 2.2.2 Deposition of Cu(In,Ga)Se\(_2\) absorber layer 11
 2.2.3 Deposition of CdS and ZnS buffer layers 12
 2.3 Physical properties of Cu(In,Ga)Se\(_2\) thin-film solar cells 12
 2.3.1 Energy band diagram of Cu(In,Ga)Se\(_2\) thin-film solar cells ... 12
 2.3.2 Ga content in Cu(In,Ga)Se\(_2\) absorber layer 14
 2.3.3 Defect characteristics of Cu(In,Ga)Se\(_2\) material .. 15
 2.3.4 Cu(In,Ga)Se\(_2\) grain boundaries 17
 2.4 Measurement of the efficiency of solar cells 18
 2.4.1 Current density-voltage measurement 18
 2.4.2 External quantum efficiency measurement 19

3 **Kelvin probe force microscopy** 21
 3.1 Historical background ... 21
 3.2 Measurement principle .. 23
 3.2.1 Topography signal acquired by tapping mode atomic force microscopy ... 23
3.2.2 Contact potential difference determined by macroscopic Kelvin probe method 28
3.2.3 Single mode Kelvin probe force microscopy 28
3.3 Limiting factors for potential contrast 32
 3.3.1 Energy band modification on clean semiconductor surfaces 32
 3.3.2 Effect of adsorbates, oxidation and surface water layer 37
 3.3.3 Effect of scattered laser beam 39
3.4 Survey and discussion of previous studies 41
 3.4.1 Surfaces of Cu(In,Ga)(S,Se)2 absorber layers 41
 3.4.2 Polished cross sections of Cu(In,Ga)(S,Se)2 solar cell devices 44
 3.4.3 Discussion about the drawbacks in previous studies 48

4 Experimental details 51
 4.1 Experimental setup 51
 4.2 Sample preparation 57
 4.3 Parameter optimization on the reference sample 61
 4.4 Measurements on the reference sample 66

5 Influence of the Ga content on the performance of CuIn_{1-x}Ga_xSe_2 solar cells 69
 5.1 jV-characteristics of CuIn_{1-x}Ga_xSe_2 solar cells 69
 5.2 EQE-measurements of CuIn_{1-x}Ga_xSe_2 solar cells 70
 5.3 Fermi energy shifting in CuIn_{1-x}Ga_xSe_2 absorber layers 72
 5.4 Charge carrier recombination in CuIn_{1-x}Ga_xSe_2 solar cells 78
 5.5 Chapter conclusion 81

6 Potential distributions at grain boundaries of CuIn_{0.7}Ga_{0.3}Se_2 absorbers 83
 6.1 Grain boundaries on the CuIn_{0.7}Ga_{0.3}Se_2 absorber surface 83
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 Grain boundaries on the CuIn${0.7}$Ga${0.3}$Se$_2$ absorber cross section</td>
<td>85</td>
</tr>
<tr>
<td>6.3 Chapter conclusion</td>
<td>94</td>
</tr>
<tr>
<td>7 Potential distributions in CuIn${0.7}$Ga${0.3}$Se$_2$ solar cells under illumination</td>
<td>95</td>
</tr>
<tr>
<td>7.1 Solar cell heterojunction under defined illumination intensities</td>
<td>95</td>
</tr>
<tr>
<td>7.2 Grain boundaries under white light illumination</td>
<td>99</td>
</tr>
<tr>
<td>7.3 Influence of illumination on surface conditions</td>
<td>102</td>
</tr>
<tr>
<td>7.4 Chapter conclusion</td>
<td>104</td>
</tr>
<tr>
<td>8 Comparison between ZnS/(Zn,Mg)O and CdS/i-ZnO buffer systems</td>
<td>105</td>
</tr>
<tr>
<td>8.1 jV-characteristics</td>
<td>105</td>
</tr>
<tr>
<td>8.2 Potential distribution through the heterojunction of the solar cells</td>
<td>107</td>
</tr>
<tr>
<td>8.3 Chapter conclusion</td>
<td>112</td>
</tr>
<tr>
<td>9 Improving the solar cell performance with conclusions drawn in this work</td>
<td>115</td>
</tr>
<tr>
<td>10 Summary and outlook</td>
<td>119</td>
</tr>
<tr>
<td>Appendix</td>
<td>153</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>165</td>
</tr>
<tr>
<td>Curriculum vitae</td>
<td>169</td>
</tr>
</tbody>
</table>