C–H and C–X Bond Functionalization
Transition Metal Mediation

Edited by

Xavi Ribas
Institut de Química Computacional i Catálisi (IQCC) & Departament de Química, Universitat de Girona, Girona, Catalonia-Spain
Email: xavi.ribas@udg.edu
Chapter 2 Mechanistic Understanding of Copper-Catalyzed Aryl–Heteroatom Bond Formation: Dependence on Ancillary Ligands

Alicia Casitas

2.1 Introduction 46
2.2 Oxidation State of the Active Catalyst 48
2.3 Studies Related to the Active Catalyst Structure 49
2.4 Activation Mode of the Aryl Halide 51
 2.4.1 Mechanism Involving σ-Bond Metathesis 52
 2.4.2 Mechanism Involving π-Complexation 53
 2.4.3 One Electron Redox Processes via CuI/CuII: SET and AT 54
 2.4.4 Oxidative Addition/Reductive Elimination Pathway 59
2.5 Computational Studies for Unravelling the Mechanism 63
2.6 Conclusions and Perspectives 67
References 68

Chapter 3 Fundamental Pd\(^0\)/Pd\(^{II}\) Redox Steps in Cross-coupling Reactions: Homogeneous, Hybrid Homogeneous–Heterogeneous to Heterogeneous Mechanistic Pathways for C–C Couplings

Ian J. S. Fairlamb and Adam F. Lee

3.1 Introduction 72
3.2 Homogeneous Catalytic Cycles 76
 3.2.1 Textbook Mechanisms (Including Anionic Variants) 76
 3.2.2 A Key Role for Pd\(^{II}\) Hydroxide Species in Suzuki Cross-Coupling 78
 3.2.3 Issues with the Purity of Pd Precatalysts 80
 3.2.4 ‘Homeopathic Cross-couplings’ – An Unusual Case? 82
3.3 Hybrid Homogeneous–Heterogeneous Catalytic Cycles 84
 3.3.1 Pd Leaching and Hybrid Behaviour 84
 3.3.2 Trapping In Situ Generated Pd Nanoparticles 85
 3.3.3 Encapsulated Pd Nanoparticles Possessing Useful Catalytic Activity 87
 3.3.4 Questions About the Active Catalyst Phase 89
3.4 Heterogeneous Cross-Coupling Reactions 91
 3.4.1 Early Evidence for Heterogeneous Behaviour 91
 3.4.2 Comparison of a Suzuki Cross-Coupling Mediated by Pd(OAc)\(_2\) and (PVP)PdNPs 91
Chapter 4
PdII/PdIV Redox Couple Mediated C–X Bond Formation
Andrei N. Vedernikov

4.1 Introduction
4.2 C–X Bond Formation by Reductive Elimination of Organopalladium(IV) Complexes
4.2.1 Formation of C–C Bonds
4.2.2 Formation of C–O Bonds
4.2.3 Formation of C–Halogen Bonds
4.2.4 Formation of C–S and C–Se Bonds
4.2.5 Formation of C–N Bonds
4.3 Summary and Outlook
References

Chapter 5
Organometallic PdIII Complexes in C–C and C–Heteroatom Bond Formation Reactions
Julia R. Khusnutdinova and Liviu M. Mirica

5.1 Introduction
5.2 Mononuclear PdIII Complexes
5.2.1 Electronic and Structural Properties of PdIII Coordination Complexes
5.2.2 Reactivity of Isolated Organometallic PdIII Complexes
5.2.3 Proposed PdIII Intermediates in C–C Bond Formation Reactions
5.2.4 Proposed PdIII Intermediates in C–Heteroatom Bond Formation Reactions
5.3 Dinuclear PdIII Complexes
5.3.1 Electronic Properties of Dinuclear PdIII Complexes
Chapter 6 Aromatic C–F Activation: Converting Fluoroarenes to Useful Building Blocks

Lauren Keyes and Jennifer A. Love

6.1 Introduction 159
6.2 Traditional Methods for the Synthesis of Aryl Fluorides 160
6.3 Modern Methods for the Synthesis of Aryl Fluorides 161
6.4 Transition Metal Catalyzed C–F Activation – Stoichiometric Studies 162
 6.4.1 Stoichiometric C–F Activation – Electron-Deficient Metal Complexes 162
 6.4.2 Stoichiometric C–F Activation – Electron-Rich Metal Complexes 164
6.5 Transition Metal Catalyzed Functionalization of Aryl Fluorides 173
6.6 Transition Metal Catalyzed Hydrodefluorination of Aryl Fluorides 173
 6.6.1 Catalytic Hydrodefluorination – Early Work 173
 6.6.2 Catalytic Hydrodefluorination 174
6.7 Transition Metal Catalyzed C–C Cross-Coupling of Aryl Fluorides 176
 6.7.1 Cross-Coupling of Aryl Fluorides – Early Work 177
 6.7.2 Cross-Coupling of Aryl Fluorides – Electron-Deficient Metal Complexes 177
 6.7.3 Cross-Coupling of Aryl Fluorides – Electron-Rich Metal Complexes 178
6.8 Conclusions and Outlook 186
References 187
Chapter 7 Strategies Towards Challenging Fluorination Reactions
Charlotte Hollingworth and Véronique Gouverneur

7.1 Introduction
7.2 Metal Mediated Fluorination
 7.2.1 Aryl Fluorides
 7.2.2 Alkenyl Fluorides
 7.2.3 Alkyl and Benzyl Fluorides
 7.2.4 Allylic Fluorides
 7.2.5 Fluoroxydrins
 7.2.6 α-Fluorination of Carbonyl Compounds
7.3 Conclusions
Acknowledgements
References

Chapter 8 Coordination-Directed Metallation Strategy for C−H Functionalization
Luciano Cuesta and Esteban P. Urriólabettia

8.1 Introduction
8.2 Variety of Functional Groups Directing Arene C−H Functionalization
8.3 Palladium Catalysis Based on Coordination-Directed Metallation
 8.3.1 Arylation
 8.3.2 Alkenylation
 8.3.3 Reactivity with Alkynes
 8.3.4 Carbonylation
 8.3.5 Alkylation and Perfluoroalkylation
 8.3.6 C−B, C−O, C−S and C−N Bond Formation
8.4 Ru-, Rh- and Cu-Catalyzed Functionalizations of Arene Groups
 8.4.1 Rh- and Ru-Catalyzed Annulation Reactions Involving Alkynes
 8.4.2 Alkenylation, Carbonylation and Arylation under Rh- or Ru-Catalysis
 8.4.3 Cu-Catalyzed Functionalizations of Aryl C−H Bonds
 8.4.4 Cu- and Pd- meta-Directed Functionalization: The New Tool
8.5 Conclusions and Outlook
Acknowledgment
References
Chapter 9 Transition Metal-Catalysed Direct Arylation of Unactivated Arenes with Aryl Halides
Aiwen Lei and Hua Zhang

9.1 Introduction 310
9.2 Iridium and Rhodium Catalysed Direct Arylation 311
9.3 Palladium Catalysed Direct Arylation 314
9.4 Iron, Cobalt and Nickel Catalysed Direct Arylation 317
9.5 Conclusion 325
References 325

Chapter 10 Double C-H Activation in Pd-Catalyzed Cross-Coupling Reactions of Non-Preactivated Arenes
Weiping Su, Min Zhang and Ge Wu

10.1 Introduction 328
10.2 Pd-Catalyzed Oxidative C-H/C-H Cross-Coupling Reaction Between Two Simple Arenes 330
10.3 Pd-Catalyzed Oxidative C-H/C-H Cross-Coupling Reaction Between a Directing-Group-Containing Arene and an Arene 334
10.4 Pd-Catalyzed Oxidative C-H/C-H Cross-Coupling Reaction Between a Heteroarene and an Arene 344
10.5 Pd-Catalyzed Oxidative C-H/C-H Cross-Coupling Reaction Between Two Heteroarenes 352
10.6 Summary and Outlook 359
References 359

Chapter 11 Dioxygen-Coupled Palladium and Copper-Catalyzed C(sp2)-H Functionalization: Reactions and Mechanisms
Xin Mu and Guosheng Liu

11.1 Introduction 363
11.2 Mechanistic studies on Pd\(^0\) Reoxidation by Molecular Oxygen 365
11.3 Pd-Catalyzed Aerobic Oxidative Functionalization of Alkenes
 11.3.1 Pd-Catalyzed Aerobic Oxidative Amination of Alkenes 368
 11.3.2 Pd-Catalyzed Oxidative Oxygenation of Alkenes 375
 11.3.3 Pd-Catalyzed Oxidative Carbon–Carbon Bond Formation 380
Chapter 12 Catalytic C–H/C–X Bond Functionalisation of Nucleosides, Nucleotides, Nucleic Acids, Amino Acids, Peptides and Proteins

Sara De Ornellas, Thomas J. Williams, Christoph G. Baumann and Ian J. S. Fairlamb

12.1 Introduction 409
12.2 Palladium-Catalysed Modification of Nucleosides, Nucleotides and Nucleic Acids 410
12.2.1 Introduction 410
12.2.2 Suzuki–Miyaura Coupling 411
12.2.3 Sonogashira Coupling 415
12.2.4 Stille Coupling 419
12.2.5 Mizoroki–Heck Coupling 420
12.2.6 Direct Arylation 421
12.3 Palladium-Catalysed Modification of Amino Acids, Peptides and Proteins 427
12.3.1 C–X Functionalisation of Amino Acids, Peptides and Proteins 427
12.3.2 C–H Functionalisation of Amino Acids and Peptides 439
12.4 Summary 442
References 443

Subject Index 448