Contents

Contributor contact details ix
Woodhead Publishing Series in Energy xi

Part I Electrical drive technology 1

1 Electrical generators for direct drive systems: a technology overview 3
M. Mueller and A. Zavvos, University of Edinburgh, UK

1.1 Introduction 3
1.2 Excitation methods 5
1.3 Permanent magnet direct drive (PMDD) generator topologies 9
1.4 Conclusion 21
1.5 References 23

2 Principles of electrical design of permanent magnet generators for direct drive renewable energy systems 30
H. Polinder, Delft University of Technology, The Netherlands

2.1 Introduction 30
2.2 Design requirements and evaluation criteria 30
2.3 Scaling laws for dimensioning machines 32
2.4 Design choices 33
2.5 Design example 39
2.6 Future trends 47
2.7 References 48
3 Electrical, thermal and structural generator design and systems integration for direct drive renewable energy systems

A. McDonald, University of Strathclyde, UK and M. Mueller and A. Zavvos, University of Edinburgh, UK

3.1 Introduction
3.2 Integrated systems design of machine topologies
3.3 Structural considerations and mechanical design
3.4 Thermal considerations
3.5 Designs of machine topologies for 5–20 MW direct drive wind turbines
3.6 Application to direct drive marine energy systems
3.7 References

4 An overview of power electronic converter technology for renewable energy systems

Z. Chen, Aalborg University, Denmark

4.1 Introduction
4.2 Power electronic components
4.3 Topologies of power electronic converters
4.4 Modulation techniques in voltage source converters (VSCs)
4.5 Power control of voltage source converters
4.6 Conclusion
4.7 References

5 Power electronic converter systems for direct drive renewable energy applications

Z. Chen, Aalborg University, Denmark

5.1 Introduction
5.2 Characteristics of wind and marine energy generation systems
5.3 Back-to-back voltage source converter (BTB-VSC)
5.4 Diode rectifier plus DC/DC converter as the generator side converter
5.5 Application of current source converters (CSCs)
5.6 Power electronic system design considerations
5.7 Power electronic system challenges and reliability
5.8 Conclusion and future trends
5.9 References

© Woodhead Publishing Limited, 2013
Part II Applications: wind and marine 137

6 Wind turbine drive systems: a commercial overview 139
 E. DE VRIES, Rotation Consultancy, The Netherlands

6.1 Introduction 139
6.2 Early geared wind turbine drive systems 140
6.3 Direct drive generators 143
6.4 Doubly fed induction generators (DFIGs) 145
6.5 Low- and medium-speed (MS) geared hybrid concept 147
6.6 Permanent magnet generators (PMGs) in direct drive wind turbines 150
6.7 Alternative technologies and power conversion 152
6.8 Reliability, availability and total systems efficiency 154
6.9 References 156

7 Case study of the permanent magnet direct drive generator in the Zephyros wind turbine 158
 A. JASSAL, Delft University of Technology, The Netherlands, K. VERSTEEGH, XEMC-Darwind, The Netherlands and H. POLINDER, Delft University of Technology, The Netherlands

7.1 Introduction 158
7.2 Design process and the resulting design 158
7.3 Other design considerations 164
7.4 Generator assembly 165
7.5 Generator testing 167
7.6 Operational experience and problems faced 170
7.7 Reliability 171
7.8 Future trends 172
7.9 Conclusion 173
7.10 References 174

8 Direct drive wave energy conversion systems: an introduction 175
 M. PRADO and H. POLINDER, Delft University of Technology, The Netherlands

8.1 Introduction 175
8.2 Wave energy 176
8.3 Direct drive in wave energy 184
8.4 Conclusion 192
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Acknowledgement</td>
<td>192</td>
</tr>
<tr>
<td>8.6</td>
<td>References</td>
<td>192</td>
</tr>
<tr>
<td>9</td>
<td>Case study of the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>M. Prado and H. Polinder, Delft University of Technology, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>9.2</td>
<td>AWS wave energy converter</td>
<td>195</td>
</tr>
<tr>
<td>9.3</td>
<td>AWS pilot plant power take-off (PTO): design and construction</td>
<td>201</td>
</tr>
<tr>
<td>9.4</td>
<td>AWS pilot plant power take-off (PTO): test results</td>
<td>208</td>
</tr>
<tr>
<td>9.5</td>
<td>Conclusion</td>
<td>217</td>
</tr>
<tr>
<td>9.6</td>
<td>Acknowledgement</td>
<td>217</td>
</tr>
<tr>
<td>9.7</td>
<td>References</td>
<td>217</td>
</tr>
<tr>
<td>10</td>
<td>Application of high-temperature superconducting machines to direct drive renewable energy systems</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>O. Keysan, University of Edinburgh, UK</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>10.2</td>
<td>Common superconducting wire materials</td>
<td>223</td>
</tr>
<tr>
<td>10.3</td>
<td>Advantages of superconducting machines</td>
<td>227</td>
</tr>
<tr>
<td>10.4</td>
<td>Challenges</td>
<td>229</td>
</tr>
<tr>
<td>10.5</td>
<td>Superconducting machine topologies</td>
<td>231</td>
</tr>
<tr>
<td>10.6</td>
<td>Direct drive applications</td>
<td>235</td>
</tr>
<tr>
<td>10.7</td>
<td>Application to wind turbines</td>
<td>237</td>
</tr>
<tr>
<td>10.8</td>
<td>Application to wave energy</td>
<td>246</td>
</tr>
<tr>
<td>10.9</td>
<td>Conclusion</td>
<td>247</td>
</tr>
<tr>
<td>10.10</td>
<td>References</td>
<td>248</td>
</tr>
</tbody>
</table>

Index 253