Symmetry Relationships between Crystal Structures

Applications of Crystallographic Group Theory in Crystal Chemistry

Ulrich Müller

Fachbereich Chemie, Philipps-Universität Marburg, Germany

with texts adapted from
Hans Wondratschek and Hartmut Bärnighausen
Contents

List of symbols xvi

1 Introduction 1
 1.1 The symmetry principle in crystal chemistry 2
 1.2 Introductory examples 4

I Crystallographic Foundations 9

2 Basics of crystallography, part 1 11
 2.1 Introductory remarks 11
 2.2 Crystals and lattices 11
 2.3 Appropriate coordinate systems, crystal coordinates 13
 2.4 Lattice directions, net planes, and reciprocal lattice 15
 2.5 Calculation of distances and angles 16

3 Mappings 19
 3.1 Mappings in crystallography 19
 3.1.1 An example 19
 3.1.2 Symmetry operations 19
 3.2 Affine mappings 20
 3.3 Application of \((n + 1) \times (n + 1)\) matrices 23
 3.4 Affine mappings of vectors 24
 3.5 Isometries 25
 3.6 Types of isometries 27
 3.7 Changes of the coordinate system 30
 3.7.1 Origin shift 30
 3.7.2 Basis change 31
 3.7.3 General transformation of the coordinate system 32
 3.7.4 The effect of coordinate transformations on mappings 33
 3.7.5 Several consecutive transformations of the coordinate system 36
 3.7.6 Calculation of origin shifts from coordinate transformations 38
 3.7.7 Transformation of further crystallographic quantities 39

Exercises 40
4 Basics of crystallography, part 2

4.1 The description of crystal symmetry in International Tables A: Positions 41
4.2 Crystallographic symmetry operations 41
4.3 Geometric interpretation of the matrix–column pair \((W, w)\) of a crystallographic symmetry operation 45
4.4 Derivation of the matrix–column pair of an isometry 47
Exercises 48

5 Group theory

5.1 Two examples of groups 49
5.2 Basics of group theory 51
5.3 Coset decomposition of a group 53
5.4 Conjugation 56
5.5 Factor groups and homomorphisms 57
5.6 Action of a group on a set 59
Exercises 61

6 Basics of crystallography, part 3

6.1 Space groups and point groups 63
 6.1.1 Molecular symmetry 63
 6.1.2 The space group and its point group 66
 6.1.3 Classification of the space groups 67
6.2 The lattice of a space group 69
6.3 Space-group symbols 70
 6.3.1 Hermann–Mauguin symbols 70
 6.3.2 Schoenflies symbols 74
6.4 Description of space-group symmetry in International Tables A 76
 6.4.1 Diagrams of the symmetry elements 76
 6.4.2 Lists of the Wyckoff positions 79
 6.4.3 Symmetry operations of the general position 80
 6.4.4 Diagrams of the general positions 80
6.5 General and special positions of the space groups 81
 6.5.1 The general position of a space group 82
 6.5.2 The special positions of a space group 83
6.6 The difference between space group and space-group type 84
Exercises 85

7 Subgroups and supergroups of point and space groups 87

7.1 Subgroups of the point groups of molecules 87
7.2 Subgroups of the space groups 89
 7.2.1 Maximal \textit{translationengleiche} subgroups 91
 7.2.2 Maximal non-isomorphic \textit{klassengleiche} subgroups 93
 7.2.3 Maximal isomorphic subgroups 93
7.3 Minimal supergroups of the space groups 94
7.4 Layer groups and rod groups 96
Exercises 99
8 Conjugate subgroups, normalizers and equivalent descriptions of crystal structures 101
 8.1 Conjugate subgroups of space groups 101
 8.2 Normalizers of space groups 103
 8.3 The number of conjugate subgroups. Subgroups on a par 106
 8.4 Standardized description of crystal structures 110
 8.5 Equivalent descriptions of crystal structures 110
 8.6 Chirality 113
 8.7 Wrongly assigned space groups 115
 8.8 Isotypism 117
Exercises 119

9 How to handle space groups 121
 9.1 Wyckoff positions of space groups 121
 9.2 Relations between the Wyckoff positions in group–subgroup relations 122
 9.3 Non-conventional settings of space groups 123
 9.3.1 Orthorhombic space groups 123
 9.3.2 Monoclinic space groups 125
 9.3.3 Tetragonal space groups 127
 9.3.4 Rhombohedral space groups 129
 9.3.5 Hexagonal space groups 129
Exercises 130

II Symmetry Relations between Space Groups as a Tool to Disclose Connections between Crystal Structures 131

10 The group-theoretical presentation of crystal-chemical relationships 133

11 Symmetry relations between related crystal structures 137
 11.1 The space group of a structure is a translationengleiche maximal subgroup of the space group of another structure 137
 11.2 The maximal subgroup is klassengleiche 141
 11.3 The maximal subgroup is isomorphic 145
 11.4 The subgroup is neither translationengleiche nor klassengleiche 148
 11.5 The space groups of two structures have a common supergroup 149
 11.6 Large families of structures 151
Exercises 156

12 Pitfalls when setting up group–subgroup relations 159
 12.1 Origin shifts 160
 12.2 Subgroups on a par 162
 12.3 Wrong cell transformations 162
 12.4 Different paths of symmetry reduction 163
 12.5 Forbidden addition of symmetry operations 165
Exercises 166
13 Derivation of crystal structures from closest packings of spheres
13.1 Occupation of interstices in closest packings of spheres
13.2 Occupation of octahedral interstices in the hexagonal-closest packing of spheres
 13.2.1 Rhombohedral hettotypes
 13.2.2 Hexagonal and trigonal hettotypes of the hexagonal-closest packing of spheres
13.3 Occupation of octahedral and tetrahedral interstices in the cubic-closest packing of spheres
 13.3.1 Hettotypes of the NaCl type with doubled unit cell
 13.3.2 Hettotypes of the CaF$_2$ type with doubled unit cell
Exercises

14 Crystal structures of molecular compounds
14.1 Symmetry reduction due to reduced point symmetry of building blocks
14.2 Molecular packings after the pattern of sphere packings
14.3 The packing in tetraphenylphosphonium salts
Exercises

15 Symmetry relations at phase transitions
15.1 Phase transitions in the solid state
 15.1.1 First- and second-order phase transitions
 15.1.2 Structural classification of phase transitions
15.2 On the theory of phase transitions
 15.2.1 Lattice vibrations
 15.2.2 The Landau theory of continuous phase transitions
15.3 Domains and twinned crystals
15.4 Can a reconstructive phase transition proceed via a common subgroup?
15.5 Growth and transformation twins
15.6 Antiphase domains
Exercises

16 Topotactic reactions
16.1 Symmetry relations among topotactic reactions
16.2 Topotactic reactions among lanthanoid halides
Exercises

17 Group–subgroup relations as an aid for structure determination
17.1 What space group should be chosen?
17.2 Solving the phase problem of protein structures
17.3 Superstructure reflections, suspicious structural features
17.4 Detection of twinned crystals
Exercises
18 Prediction of possible structure types 235
 18.1 Derivation of hypothetical structure types with the aid of group–subgroup relations 235
 18.2 Enumeration of possible structure types 239
 18.2.1 The total number of possible structures 239
 18.2.2 The number of possible structures depending on symmetry 241
 18.3 Combinatorial computation of distributions of atoms among given positions 245
 18.4 Derivation of possible crystal structure types for a given molecular structure 249
Exercises 253

19 Historical remarks 255

Appendices 259

A Isomorphic subgroups 261
 Exercises 267

B On the theory of phase transitions 269
 B.1 Thermodynamic aspects concerning phase transitions 269
 B.2 About Landau theory 271
 B.3 Renormalization-group theory 274
 B.4 Discontinuous phase transitions 276

C Symmetry species 279

D Solutions to the exercises 281

References 301

Glossary 323

Index 327