Contents

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>page xvi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forewords</td>
<td>xix</td>
</tr>
<tr>
<td>Preface</td>
<td>xxii</td>
</tr>
<tr>
<td>List of contributors</td>
<td>xxvii</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xxx</td>
</tr>
</tbody>
</table>

1 Introduction
Xiaoli Chu, David López-Perez, Fredrik Gunnarsson and Yang Yang

1.1 Mobile data explosion and capacity needs 1
1.2 Capacity and coverage solutions 3
1.2.1 Improving existing macrocell networks 4
1.2.2 Network base station densification 4
1.2.3 Indoor capacity and coverage 4
1.2.4 Heterogeneous cellular networks 5
1.3 Heterogeneous cellular network nodes 5
1.3.1 Remote radio heads 6
1.3.2 Micro base stations 6
1.3.3 Pico base stations 6
1.3.4 Femtocell access points 7
1.3.5 Relay nodes 7
1.4 3GPP LTE-Advanced heterogeneous cellular networks 7
1.5 Heterogeneous cellular network challenges 8
1.5.1 Optimal network evolution path 8
1.5.2 Access control 9
1.5.3 Mobility and handover 9
1.5.4 Self-organizing networks 10
1.5.5 Intercell interference 10
1.5.6 Intersite coordination 11
1.5.7 Energy efficiency 12
1.5.8 Backhaul 12
References 13
2 Radio propagation modeling
Zhihua Lai, Guillaume Villemaud, Meiling Luo and Jie Zhang

2.1 Introduction 15
2.2 Different types of propagation model 16
 2.2.1 Empirical models 17
 2.2.2 Deterministic models 19
 2.2.3 Semi-deterministic models 33
 2.2.4 Hybrid models 39
2.3 Clutter and terrain 40
2.4 Antenna radiation pattern 41
2.5 Calibration 42
2.6 MIMO channel models 42
 2.6.1 Geometry-based stochastic channel models 44
 2.6.2 3GPP SCM and WINNER I model 46
 2.6.3 WINNER II model 47
 2.6.4 COST 259/273/2100 MIMO channel models 48
 2.6.5 Perspectives of channel modeling 51
2.7 Summary and conclusions 52
References 52

3 System-level simulation and evaluation models
David López-Pérez and Mats Folke

3.1 Introduction 57
3.2 System-level simulation 58
3.3 Static versus dynamic system-level simulations 59
 3.3.1 Static snapshot-based approaches 59
 3.3.2 Dynamic event-driven approaches 60
3.4 Building blocks 60
 3.4.1 Wrap-around 60
 3.4.2 Shadow fading: auto- and cross-correlation 62
 3.4.3 Multi-path fading: International Telecommunication Union
 (ITU) and Typical Urban (TU) models 65
 3.4.4 Antenna patterns 68
 3.4.5 Signal quality: maximal ratio combining (MRC) and
 exponential effective SINR mapping (EESM) 70
3.5 3GPP reference system deployments and evaluation assumptions 71
 3.5.1 Homogeneous deployments 72
 3.5.2 Heterogeneous deployments 73
3.6 Placing of low-power nodes and users 78
 3.6.1 Macrocells overlaid with indoor or outdoor picocells or relays 78
 3.6.2 Macrocells overlaid with indoor femtocells 80
3.7 Traffic modeling 82
 3.7.1 Full buffer model 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2 FTP model</td>
<td>83</td>
</tr>
<tr>
<td>3.7.3 VoIP model</td>
<td>83</td>
</tr>
<tr>
<td>3.8 Mobility modeling</td>
<td>83</td>
</tr>
<tr>
<td>3.9 Summary and conclusions</td>
<td>84</td>
</tr>
<tr>
<td>Copyright notices</td>
<td>84</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
<tr>
<td>4 Access mechanisms</td>
<td>87</td>
</tr>
<tr>
<td>Vikram Chandrasekhar, Anthony E. Ekpenyong and Ralf Bendlin</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>87</td>
</tr>
<tr>
<td>4.2 Access control modes</td>
<td>87</td>
</tr>
<tr>
<td>4.3 Basics of the UMTS cellular architecture</td>
<td>88</td>
</tr>
<tr>
<td>4.3.1 Core network</td>
<td>89</td>
</tr>
<tr>
<td>4.3.2 Access network</td>
<td>89</td>
</tr>
<tr>
<td>4.3.3 Radio protocol functions in UTRAN</td>
<td>90</td>
</tr>
<tr>
<td>4.4 Basics of the LTE cellular architecture</td>
<td>92</td>
</tr>
<tr>
<td>4.4.1 Evolved Packet Core (EPC)</td>
<td>92</td>
</tr>
<tr>
<td>4.4.2 Access network</td>
<td>93</td>
</tr>
<tr>
<td>4.4.3 Radio protocol functions in Evolved-UTRAN (E-UTRAN)</td>
<td>94</td>
</tr>
<tr>
<td>4.5 LTE Release 8: mobility management to CSG cells</td>
<td>95</td>
</tr>
<tr>
<td>4.5.1 Idle mode mobility to and from CSG cells</td>
<td>95</td>
</tr>
<tr>
<td>4.5.2 Mobility to and from CSG cells in RRC_CONNECTED mode</td>
<td>97</td>
</tr>
<tr>
<td>4.5.3 PCI confusion</td>
<td>97</td>
</tr>
<tr>
<td>4.6 LTE Release 9: mobility enhancements to CSG cells and introduction of HA cells</td>
<td>97</td>
</tr>
<tr>
<td>4.6.1 Hybrid access</td>
<td>99</td>
</tr>
<tr>
<td>4.6.2 Access control, PCI confusion resolution and proximity indication</td>
<td>99</td>
</tr>
<tr>
<td>4.7 LTE Release 10 and beyond: introduction of X2 interface for HeNBs</td>
<td>101</td>
</tr>
<tr>
<td>4.8 Distinguishing features of UMTS access mechanisms</td>
<td>101</td>
</tr>
<tr>
<td>4.9 Case study of access control in LTE</td>
<td>102</td>
</tr>
<tr>
<td>4.9.1 Open access heterogeneous cellular network</td>
<td>103</td>
</tr>
<tr>
<td>4.9.2 Closed access heterogeneous cellular network</td>
<td>106</td>
</tr>
<tr>
<td>4.10 Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>Copyright notices</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>110</td>
</tr>
<tr>
<td>5 Interference modeling and spectrum allocation in two-tier networks</td>
<td>111</td>
</tr>
<tr>
<td>Tony Q. S. Quek and Marios Kountouris</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>111</td>
</tr>
<tr>
<td>5.2 Interference modeling</td>
<td>113</td>
</tr>
<tr>
<td>5.3 System model</td>
<td>117</td>
</tr>
<tr>
<td>5.3.1 Two-tier network model</td>
<td>117</td>
</tr>
</tbody>
</table>
5.3.2 Spectrum allocation 118
5.3.3 Femtocell access 119
5.3.4 Signal-to-interference ratio 120
5.4 Downlink success probability 121
5.4.1 Success probabilities with closed access femtocells 121
5.4.2 Success probability with open access femtocells 122
5.5 Two-tier downlink throughput optimization 124
5.5.1 Downlink throughput analysis 124
5.5.2 Network throughput optimization 125
5.5.3 Optimal joint allocation with closed access femtocells 126
5.5.4 Optimal disjoint allocation with closed access femtocells 126
5.5.5 Optimal joint allocation with open access femtocells 128
5.5.6 Optimal disjoint allocation with open access femtocells 129
5.6 Numerical results 129
5.7 Conclusion and future direction 134
5.8 Appendix 134
5.8.1 Derivation of $f_R(r)$ 134
5.8.2 Proof of Lemma 5.1 135
5.8.3 Proof of Lemma 5.2 136
5.8.4 Proof of Lemma 5.4 138
5.8.5 Proof of Lemma 5.5 139
Copyright notice 140
References 140

6 Self-organization 145
Fredrik Gunnarsson

6.1 Introduction 145
6.2 Management architecture 146
6.3 Self-configuration 147
6.3.1 Planning 148
6.3.2 Installation 149
6.4 Self-optimization 151
6.4.1 Automatic neighbor relation 152
6.4.2 Automatic cell identity management 156
6.4.3 Random access optimization 158
6.4.4 Mobility robustness optimization 161
6.4.5 Mobility load balancing 166
6.4.6 Transmission power tuning 167
6.4.7 Coverage and capacity optimization 169
6.5 Self-healing 170
6.6 Performance monitoring 171
6.6.1 Minimization of drive tests 171
6.6.2 Heterogeneous cellular network monitoring 173
7 Dynamic interference management
Ismail Güvenç, Fredrik Gunnarsson and David López-Pérez

7.1 Excessive intercell interference 179
7.1.1 Transmission power difference between nodes 180
7.1.2 Low-power node range expansion 181
7.1.3 Closed subscriber group access 181
7.2 Range expansion 181
7.2.1 Definition of range expansion 182
7.2.2 Downlink/uplink coverage imbalance 183
7.2.3 Behavior of range expansion 184
7.3 Intercell interference coordination 186
7.4 Frequency-domain intercell interference coordination 186
7.4.1 Frequency-domain intercell interference coordination in LTE 187
7.4.2 Carrier-based intercell interference coordination 187
7.4.3 Uplink interferer identification 189
7.5 Power-based intercell interference coordination 189
7.5.1 Uplink power-based intercell interference coordination 190
7.5.2 Downlink power-based intercell interference coordination 190
7.6 Time-domain intercell interference coordination 192
7.6.1 Almost blank subframes 194
7.6.2 Almost blank subframes for range-expanded picocells 196
7.6.3 Reduced-power subframes and UE interference cancellation 198
7.7 Performance evaluations 199
7.7.1 Power-based and time-domain intercell interference coordination 199
7.7.2 Performance analysis for time-domain intercell interference coordination 202
7.7.3 Coverage analysis for time-domain intercell interference coordination and range expansion 204
7.7.4 Capacity analysis for time-domain intercell interference coordination and range expansion 206
7.7.5 Reduced-power ABS and UE interference cancellation 209
7.8 Summary and conclusions 212
Copyright notices 212
References 213

8 Uncoordinated femtocell deployments
David López-Pérez, Xiaoli Chu and Holger Claussen

8.1 Introduction 217
8.2 Femtocell market 219
Contents

8.3 Femtocell deployment scenarios 220
8.4 The Small Cell Forum 222
8.5 Backhaul 224
8.6 Synchronization and localization 225
8.7 Interference mitigation in femtocell networks 227
 8.7.1 Carrier allocation strategies 227
 8.7.2 Power-based techniques 231
 8.7.3 Antenna-based techniques 236
 8.7.4 Load-balancing-based techniques 238
 8.7.5 Frequency-based techniques 239
8.8 Summary 241
Copyright notices 241
References 242

9 Mobility and handover management 245
Huaxia Chen, Shengyao Jin, Honglin Hu, Yang Yang, David López-Pérez, Ismail Güvenç and Xiaoli Chu

9.1 Introduction 245
9.2 Mobility management in RRC-connected state 246
 9.2.1 Overview of the handover procedure in LTE systems 247
 9.2.2 Handover failures and ping-pongs 254
 9.2.3 Improved schemes for mobility management in RRC-connected state 258
9.3 Mobility management in RRC-idle state 263
 9.3.1 Overview of cell selection/reselection procedure 263
 9.3.2 Improved schemes for mobility management in RRC-idle state 266
9.4 Mobility management in heterogeneous cellular networks 272
 9.4.1 Range expansion, almost blank subframes, and HO performance 273
 9.4.2 HCN mobility performance with 3GPP Release-10 eICIC 276
 9.4.3 Mobility-based intercell interference coordination for HCNs 279
9.5 Conclusion 281
Copyright notices 281
References 281

10 Cooperative relaying 284
Jing Xu, Jiang Wang and Ting Zhou

10.1 Relay function 285
 10.1.1 AF and DMF relay 285
 10.1.2 Throughput comparison 287
 10.1.3 Link adaptation of DMF relay 289
10.2 Relay architecture in LTE-Advanced
 10.2.1 Interface and architecture 293
 10.2.2 Protocol stack 295
10.3 Cooperative relaying
 10.3.1 Introduction 298
 10.3.2 Cooperative EF relay 299
 10.3.3 Joint network-channel coding for user cooperation 303
10.4 Conclusion 309
Acknowledgment 310
Copyright notices 310
References 310

11 Network MIMO techniques 312
Gan Zheng, Yongming Huang and Kai-Kit Wong

11.1 Introduction 312
11.2 General principles of network MIMO
 11.2.1 Problems of single-cell processing 313
 11.2.2 Advantages of multi-cell processing 314
 11.2.3 Capacity results 315
 11.2.4 Categories of network MIMO 318
11.3 Application scenarios of network MIMO in HCN
 11.3.1 Backhaul limit in HCN 321
 11.3.2 Clustering mechanism for HCNs 321
 11.3.3 CSI sharing 322
11.4 Distributed downlink coordinated beamforming for macrocell network
 11.4.1 System model and problem formulation 324
 11.4.2 Distributed multi-cell beamforming based on interference leakage 326
 11.4.3 Distributed multi-cell beamforming based on max–min SINR 326
 11.4.4 Analysis of distributed implementation 333
 11.4.5 Simulation results 334
11.5 Downlink coordinated beamforming applications in HCN
 11.5.1 System model 337
 11.5.2 Downlink multi-cell beamforming approaching Pareto optimality with max–min fairness 339
 11.5.3 Performance analysis 341
 11.5.4 Distributed implementation 344
 11.5.5 Simulation results 344
11.6 The road ahead of network MIMO in HCN 346
11.7 Summary and conclusions 348
References 348
12 Network coding
Haishi Ning and Cong Ling

12.1 Introduction
12.2 Coding opportunities in heterogeneous cellular networks
 12.2.1 An upper bound on coding gain without geometry consideration
 12.2.2 An upper bound on coding gain with geometry consideration
 12.2.3 Generalized butterfly network
 12.2.4 Necessary condition for network coding gain
 12.2.5 Supporting examples
12.3 Efficiency and reliability
 12.3.1 Issues of naïve interference cancellation
 12.3.2 WNC-based partial interference cancellation strategy
 12.3.3 Practical considerations
 12.3.4 Diversity–multiplexing tradeoff analysis
12.4 Construction of distributed coding solutions
12.5 Summary and conclusion

13 Cognitive radio
Miguel López-Benítez

13.1 Introduction
13.2 Cognitive radio techniques
 13.2.1 Spectrum awareness
 13.2.2 Spectrum selection
 13.2.3 Spectrum sharing
 13.2.4 Spectrum mobility
 13.2.5 Summary of cognitive radio techniques and cross-layer design
13.3 Application scenarios for cognitive radio in heterogeneous cellular networks
 13.3.1 Rural broadband
 13.3.2 Dynamic backhaul
 13.3.3 Cognitive ad hoc networks
 13.3.4 Capacity extension in cellular networks
 13.3.5 Direct UE-to-UE communication in cellular networks
 13.3.6 Coordination and cognitive X2 links
 13.3.7 Cognitive femtocells
13.4 Standardization activities: the future of cognitive radio systems
13.5 Summary and conclusions

References
14 Energy-efficient architectures and techniques

Weisi Guo, Min Chen and Athanasios V. Vasilakos

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>426</td>
</tr>
<tr>
<td>14.2 Green cellular projects and metrics</td>
<td>429</td>
</tr>
<tr>
<td>14.2.1 Green cellular network projects</td>
<td>429</td>
</tr>
<tr>
<td>14.2.2 A taxonomy of green metrics</td>
<td>431</td>
</tr>
<tr>
<td>14.2.3 How green are cellular networks?</td>
<td>431</td>
</tr>
<tr>
<td>14.3 Fundamental tradeoffs: capacity, energy, and cost</td>
<td>432</td>
</tr>
<tr>
<td>14.3.1 Introduction</td>
<td>432</td>
</tr>
<tr>
<td>14.3.2 Fundamental energy saving limits</td>
<td>433</td>
</tr>
<tr>
<td>14.3.3 Maximum spectral and energy efficiency</td>
<td>433</td>
</tr>
<tr>
<td>14.3.4 Maximum cost efficiency</td>
<td>434</td>
</tr>
<tr>
<td>14.4 Green cellular network architectures</td>
<td>436</td>
</tr>
<tr>
<td>14.4.1 Homogeneous deployment</td>
<td>438</td>
</tr>
<tr>
<td>14.4.2 Heterogeneous deployment</td>
<td>438</td>
</tr>
<tr>
<td>14.5 Green cellular transmission techniques</td>
<td>443</td>
</tr>
<tr>
<td>14.5.1 MIMO techniques</td>
<td>443</td>
</tr>
<tr>
<td>14.5.2 Interference reduction</td>
<td>444</td>
</tr>
<tr>
<td>14.5.3 Scheduling</td>
<td>445</td>
</tr>
<tr>
<td>14.6 Integrated heterogeneous cellular networks</td>
<td>445</td>
</tr>
<tr>
<td>14.6.1 Flexible heterogeneous cellular networks</td>
<td>445</td>
</tr>
<tr>
<td>14.6.2 Self-organizing networks</td>
<td>446</td>
</tr>
<tr>
<td>14.7 Discussion</td>
<td>447</td>
</tr>
<tr>
<td>14.7.1 Standardization of green cellular networks</td>
<td>447</td>
</tr>
<tr>
<td>14.7.2 Pricing in green cellular networks</td>
<td>448</td>
</tr>
<tr>
<td>14.7.3 New energy and materials</td>
<td>448</td>
</tr>
<tr>
<td>14.8 Conclusion</td>
<td>448</td>
</tr>
</tbody>
</table>

Copyright notices
References

Index