ULTRAFAST LASER PROCESSING
From Micro- to Nanoscale
Contents

Preface xvii

1. Overview of Ultrafast Laser Processing 1
 Koji Sugioka and Ya Cheng
 1.1 Introduction 2
 1.2 Characteristics of Ultrafast Laser Processing 3
 1.2.1 Nonthermal Process 3
 1.2.2 Suppression of Heat-Affected Zone 4
 1.2.3 Absence of Plasma Shielding 5
 1.2.4 Multiphoton Absorption 5
 1.2.5 Internal Modification 6
 1.2.6 Carrier Excitation in Dielectrics 7
 1.2.7 Spatial Resolution of Ultrafast Laser Processing 7
 1.3 Ultrafast Laser Materials Processing 9
 1.3.1 Surface Micromachining 9
 1.3.2 Surface Micro- and Nanostructuring 11
 1.3.3 Nanoablation 13
 1.3.4 Two-Photon Photopolymerization 16
 1.3.5 Internal Modification of Transparent Materials 18
 1.3.6 Biomedical Applications 21
 1.3.7 Industrial and Commercial Applications 22
 1.4 Summary and Outlook 24

2. Lasers for Ultrafast Laser–Materials Processing 37
 Mark Ramme, Andreas Vaupel, Michaël Hemmer, Jiyeon Choi, Ilya Mingareev, and Martin C. Richardson
 2.1 Introduction 38
 2.2 Fundamental Interaction Processes: Laser Dependence 40
 2.2.1 Principal Physical Mechanisms in Ultrafast Laser Processing 40
 2.2.1.1 Reduction of the damage threshold 41
2.2.1.2 Nonlinear absorption processes 42
2.2.2 Ablation Mechanisms and Surface Structuring 43
 2.2.2.1 Surface modification thresholds 43
 2.2.2.2 Material ablation 44
 2.2.2.3 Surface texturing 46
2.2.3 Bulk Material Modification below the Ablation Threshold 46
2.2.4 Heat-Accumulation Effects in Laser Processing 48

2.3 Principal Application Areas and Their Dependence on Laser Parameters 49
 2.3.1 Micromachining Based on Ablation 49
 2.3.2 Surface Structuring 50
 2.3.3 Back-Side Structuring 51
 2.3.4 Laser Surface Cleaning 51
 2.3.5 3D Structuring and Microfluidics 52
 2.3.5.1 Fusion welding of glass 52
 2.3.5.2 Selective laser etching and microfluidics 54
 2.3.6 3D Laser Lithography Based on Two-Photon Polymerization 56
 2.3.7 Structures in Refractive Index Modification 57
 2.3.8 Other Applications 59

2.4 Ultrashort Pulse Lasers: Scientific and Commercial 60
 2.4.1 Recent Developments on Ultrashort Pulse Generation 60
 2.4.1.1 Laser of the early days of material processing (70s and early 80s) 61
 2.4.1.2 Broadening the spectrum... and the horizons (late 80s) 61
 2.4.1.3 Energy scaling, pulse shortening, wavelength scaling (mid-80s to today) 62
2.4.2 Techniques for Generation of Ultra Short Pulses at High Average Power 62
 2.4.2.1 Laser oscillators 63
 2.4.2.2 Mode-locking techniques 63
 2.4.2.3 Master oscillator power amplifier 65
 2.4.2.4 Chirped pulse amplification 66
 2.4.2.5 Merging technologies: the gateway to high-repetition-rate, few-cycle high-energy pulses 66

2.4.3 Current High-Average Power, Ultrashort Laser Technology 67
 2.4.3.1 Fiber amplifier system 68
 2.4.3.2 Ti:Sapphire-based CPA systems 69
 2.4.3.3 Solid-state, rod-type systems 70
 2.4.3.4 Slab systems 70
 2.4.3.5 Thin-disk systems 72
 2.4.3.6 Cryogenically cooled, ultrashort laser system 73

2.4.4 OPA, OPCPA, and the Next Generation of Mid-IR Lasers 74
 2.4.4.1 Optical parametric amplification (OPA) 74
 2.4.4.2 Optical parametric chirped-pulse amplification (OPCPA) 74

2.5 Irradiation Optics, Online Monitoring, and Diagnostics 76
 2.5.1 Laser Power and Processing Speed 76
 2.5.2 Irradiation Optics and Regimes 77
 2.5.3 Processing Stations 79
 2.5.4 Online Imaging, Diagnostics, and Feedback 79

2.6 Future Prospects 80
 2.6.1 Laser Development: The Split between Shorter Pulses and Industrial Deployment 80
 2.6.2 Future Advances in Processing Stations 81
2.6.3 Laser-Fabricated Photonic Devices 82
2.7 Summary 82

3. Fundamentals of Ultrafast Laser Processing 99
 Nadezhda M. Bulgakova
 3.1 Introduction 100
 3.2 Material Excitations by Ultrashort Laser Pulses 104
 3.2.1 Two-Temperature Model as a Building Block for Studies of Laser-Matter Interaction at Ultrashort Irradiation Regimes 105
 3.2.2 Metals: Insights from the Two-Temperature Modeling 108
 3.2.3 Laser-Induced Processes in Semiconductors 113
 3.2.4 Photoexcitation and Relaxation of Transparent Dielectrics Irradiated by Ultrashort Laser Pulses 117
 3.3 Studies of Laser Ablation Mechanisms in Ultrashort Irradiation Regimes 122
 3.3.1 Molecular Dynamic Studies: Spallation and Phase Explosion 124
 3.3.2 Hydrodynamic Modeling 131
 3.3.3 Coulomb Explosion of Dielectric Surfaces 136
 3.4 Volume Modifications of Transparent Materials 142
 3.4.1 Propagation of Focused Laser Beams through Nonlinear Absorbing Media 143
 3.4.2 Heat Accumulation Effects 149
 3.4.3 Plastic Deformations 152
 3.4.4 Volume Nanogratings 154
 3.5 Influence of Ambient Gas on Ultrashort Laser Processing of Surfaces 156
 3.6 Conclusions 159

 Yoshio Hayasaki and Satoshi Hasegawa
 4.1 Introduction 184
4.2 Fundamentals of Ultrafast Pulse Control

4.2.1 Mathematical Description of Ultrafast Laser Pulse 185

4.2.2 Analogy between Control of Time- and Space-Varying Signals 186

4.2.3 Analogy between Control in Temporal Frequency Domain and Spatial Frequency Domain 188

4.2.4 Linear Filtering 188

4.2.5 Temporal Pulse Manipulation with Linear Filtering (Pulse Shaping) 189

4.2.6 Spatial Pulse Manipulation with Linear Filtering (Computer Generated Hologram) 190

4.2.7 Frequency Filter Optimization 191

4.3 Temporal Pulse Shaping 192

4.3.1 Double Pulse Method 193

4.3.2 Material Processing Using Temporally Shaped Pulses Formed by a Pulse Shaper 194

4.3.3 Adaptive Control Based on Temporal Pulse Shaping 195

4.3.3.1 Minimization of pulse duration 195

4.3.3.2 Optimization of material's response 196

4.4 Spatial Pulse Shaping for Parallel Material Processing 197

4.4.1 Requirements of Spatial Pulse Shaping and Its Advantages 198

4.4.1.1 Parallel pulses and deformed pulse 198

4.4.1.2 Pulse energy and duration 198

4.4.1.3 High throughput 199

4.4.1.4 High energy-use efficiency 199

4.4.1.5 High uniformity 200

4.4.1.6 Variable pattern processing 200

4.4.1.7 Instantaneous processing 201

4.4.2 Passive Optical Components for Spatial Pulse Shaping 201
4.4.2.1 Apertures (optical masks) 201
4.4.2.2 Beam splitters 202
4.4.2.3 Lens arrays 202
4.4.2.4 Diffractive optical elements 202
4.4.3 Active Optical Components for Spatial Pulse Shaping: Spatial Light Modulators 204
 4.4.3.1 Liquid crystal spatial light modulators 204
 4.4.3.2 Deformable mirrors 205
4.4.4 Optical Setups 206
 4.4.4.1 Image plane 207
 4.4.4.2 Fourier plane 207
 4.4.4.3 Fresnel plane 210
4.4.5 Adaptive Optimization of CGH in Laser Processing System 211
4.5 Spatiotemporal Pulse Manipulation 212
 4.5.1 Spatiotemporal Dispersion Control 212
 4.5.2 Spatiotemporal Focusing 212
 4.5.3 Diffractive Spatiotemporal Focusing 212
 4.5.4 Spatiotemporal Pulse Shaping 212
4.6 Conclusions and Future Perspectives 213

5. Surface Patterning, Drilling, and Cutting 225
 Andreas Ostendorf and Benjamin Schöps
5.1 Introduction 226
5.2 Surface Patterning 227
 5.2.1 Motivation 227
 5.2.2 Characteristics of Thin Film Ablation 228
 5.2.3 Patterning with High Repetition Rate Lasers 230
 5.2.4 Beam Focusing and Forming 232
 5.2.5 Applications 234
 5.2.5.1 Thin-film solar modules 234
 5.2.5.2 Self-assembled monolayers 237
 5.2.5.3 Nanotexturing, microbumps, microjets 239
 5.2.5.4 Black silicon 241
 5.2.5.5 Wettability properties 242
5.3 Bulk Micromachining 244
5.3.1 Motivation
5.3.2 Characteristics of Bulk Machining
5.3.3 Differences in the Absorption between Metals and Dielectrics
5.3.4 Plasma Influence, Self-Focusing, Filamentation
5.3.5 Applications
 5.3.5.1 Drilling
 5.3.5.2 Cutting
5.4 Conclusion and Future Perspectives

6. Ultrafast Laser-Assisted Surface Micro- and Nanostructuring

Emmanuel Stratakis, Ekaterina V. Barmina, Panagiotis A. Loukakos, Georgy A. Shafeev, and Costas Fotakis

6.1 Introduction

6.2 Fabrication of Surface Micro/Nanostructures by Ultrafast Laser Processing in Gas Media
 6.2.1 Laser-Induced Periodic Surface Structures
 6.2.1.1 Characteristics of LIPSS formation
 6.2.1.2 Proposed mechanisms for LIPSS formation
 6.2.1.3 Applications of femtosecond laser nanostructured surfaces
 6.2.2 Formation of Micro and Micro/Nano Conical Structures
 6.2.2.1 Characteristics of micro/nanostructures formation
 6.2.2.2 Proposed mechanisms for micro/nano cones formation
 6.2.2.3 Applications of micro/nanostructured surfaces

6.3 Fabrication of Surface Micro/Nanostructures by Ultrafast Laser Processing in Liquid Media
 6.3.1 Morphology of NS under Laser Ablation of Planar Surfaces
 6.3.2 Growth of NS on Pre-Patterned Surfaces
9.2.1 Exposure Parameters and Considerations
 9.2.1.1 Pulse energy and translation speed 429
 9.2.1.2 Low vs. high repetition rate 430
 9.2.1.3 Longitudinal vs. transverse writing 431
9.2.2 Different Materials 432
 9.2.2.1 Glasses 432
 9.2.2.2 Crystals 433
9.3 Photonic Devices 436
 9.3.1 Passive Devices 436
 9.3.1.1 Power routing devices 436
 9.3.1.2 Discrete waveguide arrays 447
 9.3.1.3 Waveguide Bragg grating devices 453
 9.3.2 Active Devices 457
 9.3.2.1 Waveguide amplifiers 457
 9.3.2.2 Waveguide lasers 461
 9.3.3 Fibre-Based Devices 467
 9.3.4 Integrated 3D Devices 469
 9.3.4.1 Optofluidic devices 470
 9.3.4.2 Optomechanical devices 471
 9.3.4.3 Integrated circuits for quantum information experiments 472
9.4 Conclusions and Future Outlook 475

10. Fabrication of Microfluidic Chips and Integrated Optofluidic Devices in Glass by Femtosecond Laser Direct Writing 489

 Ya Cheng and Koji Sugioka

10.1 Introduction 489
10.2 Fabrication of Microfluidic Structures in Glass 491
 10.2.1 Femtosecond-Laser-Assisted Wet Chemical Etching 491
 10.2.2 Liquid-Assisted Femtosecond Laser 3D Drilling 499
10.3 Fabrication of Micro-Optical Components and Optofluidic Integration in Glass 502
10.3.1 Free-Space Micro-Optical Components 502
10.3.2 Integrated Optofluidic Systems 504
10.4 Applications of Microfluidic and Integrated Optofluidic Chips in Biomedical Research 506
10.4.1 Dynamic Observation of Living Cells Using Nanoaquariums 506
10.4.2 Optical Sensing with Integrated Optofluidic Chips 510
10.5 Conclusions 510

11. Fabrication of 3D Functional Microdevices by Two-Photon Photopolymerization 519

Dong Wu, Xiao-Feng Lin, Qi-Dai Chen, Hong Xia, Yong-Lai Zhang, and Hong-Bo Sun

11.1 Introduction 520
11.2 Femtosecond Laser Micronanofabrication Based on Two-Photon Photopolymerization 521
11.2.1 Chemical Processes 521
11.2.2 The Spatial Resolution 523
11.2.3 Surface Roughness 527
11.2.4 Materials Functionalization 531
11.3 Micro-Optical Components Macros 535
11.3.1 Planar Optical Devices 535
11.3.2 Three-Dimensional Complex Photonic Structures 539
11.4 Functional Micromachines 544
11.4.1 Light-Driven Microdevices 544
11.4.2 Magnetic-Driven Micromachines 548
11.5 Other Applications 551
11.5.1 Functional Microfluidic Components 551
11.5.2 Biological Applications 554
11.6 Outlook 558
11.6.1 Novel 3D Optical Devices and Integrated Optical Circuits 558
11.6.2 Microfluidic Devices with Functional 3D Components for Biological Application 558
11.6.3 Electrical-Optical Complex Micromechanical Systems 559
11.7 Conclusions 559
12. Ultrafast Laser Processing: From Micro- to Nanoscale Industrial Applications

Friedrich Dausinger and Steffen Sommer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>570</td>
</tr>
<tr>
<td>12.2 Structuring of Surfaces</td>
<td>572</td>
</tr>
<tr>
<td>12.2.1 Tribological Patterns</td>
<td>572</td>
</tr>
<tr>
<td>12.2.2 Embossing and Moulding Tools</td>
<td>574</td>
</tr>
<tr>
<td>12.2.3 Printing and Embossing Rolls</td>
<td>575</td>
</tr>
<tr>
<td>12.2.4 Functionalization of Opto-Electronics</td>
<td>576</td>
</tr>
<tr>
<td>12.3 High-Precision Drilling</td>
<td>578</td>
</tr>
<tr>
<td>12.4 Separation</td>
<td>580</td>
</tr>
<tr>
<td>12.4.1 Dielectrics</td>
<td>580</td>
</tr>
<tr>
<td>12.4.2 Semiconductors</td>
<td>581</td>
</tr>
<tr>
<td>12.4.3 Medical Devices</td>
<td>582</td>
</tr>
<tr>
<td>12.5 Outlook</td>
<td>584</td>
</tr>
</tbody>
</table>

Index

587