Polymer–Graphene Nanocomposites

Edited by

Vikas Mittal
The Petroleum Institute, Chemical Engineering Program, Abu Dhabi,
United Arab Emirates
Email: vmittal@pi.ac.ae
Contents

Chapter 1 Graphene Functionalization: A Review
Mo Song and Dongyu Cai

1.1 Introduction
1.2 Fabrication of Graphene
 1.2.1 Mechanical Cleavage
 1.2.2 Reduction of Graphene Oxide
 1.2.3 Chemical Vapour Deposition
 1.2.4 Synthesis of Graphene Nanoribbons (GNRs)
 1.2.5 Other Methods
1.3 Functionalization of Graphene
 1.3.1 Functionalization of Graphene with Organic Species
 1.3.2 Functionalization of Graphene with Macromolecules
 1.3.3 Functionalization of Graphene with Inorganic Nanoparticles (INPs)
1.4 Functionalized Graphene–Polymer Nanocomposites (FPNs)
 1.4.1 Fabrication
 1.4.2 Mechanical Properties
 1.4.3 Electrical Properties
 1.4.4 Thermal Properties
1.5 Conclusions and Perspective
References

RSC Nanoscience & Nanotechnology No. 26
Polymer–Graphene Nanocomposites
Edited by Vikas Mittal
© The Royal Society of Chemistry 2012
Published by the Royal Society of Chemistry, www.rsc.org
Chapter 2 Gelation of Graphene Oxide

Gaoquan Shi

2.1 Introduction 52
2.2 GO-Based Gels 53
 2.2.1 Acid-Induced Gelation 53
 2.2.2 Cross-linker-Induced Gelation 55
2.3 Reduced GO-Based Gels 60
 2.3.1 Hydrothermal or Solvothermal Reduction 60
 2.3.2 Chemical Reduction 62
 2.3.3 Electrochemical Reduction 62
2.4 Conclusion 63
Acknowledgements 63
References 63

Chapter 3 Electrically Conductive Polymer–Graphene Composites
Prepared Using Latex Technology

Nadia Grossiord, Marie-Claire Hermant and Evgeniy Tkalya

3.1 Introduction 66
3.2 Fundamentals of Latex Technology 67
 3.2.1 In Situ Polymerization and Heterocoagulation Strategies 70
3.3 Graphene–Polymer Composites via Latex Technology 72
3.4 Graphene–Polymer Composite Production: An Overview 75
3.5 Industrial Relevance 76
3.6 Conclusion 81
References 82

Chapter 4 Polymer–Graphene Nanocomposites by Living Polymerization (RAFT) in Miniemulsion

Hussein M. Etmimi and Ron D. Sanderson

4.1 Introduction 86
4.2 Synthesis of PGNs Based on Functionalized Graphene 87
4.3 Miniemulsion Polymerization 89
 4.3.1 Miniemulsion Versus Emulsion Polymerization 90
 4.3.2 Typical Miniemulsion Formulations 91
 4.3.3 Preparation of Miniemulsions 92
 4.3.4 Initiators Used in Miniemulsions 93
 4.3.5 Miniemulsion Polymerization for the Synthesis of PGNs 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Conventional Free Radical Polymerization Versus Controlled/Living Radical Polymerization</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>Fundamentals of CLRP</td>
<td>96</td>
</tr>
<tr>
<td>4.6</td>
<td>Common CLRP Techniques</td>
<td>97</td>
</tr>
<tr>
<td>4.6.1</td>
<td>NMP</td>
<td>97</td>
</tr>
<tr>
<td>4.6.2</td>
<td>ATRP</td>
<td>98</td>
</tr>
<tr>
<td>4.6.3</td>
<td>RAFT-Mediated Polymerization</td>
<td>99</td>
</tr>
<tr>
<td>4.7</td>
<td>RAFT-Mediated Emulsion Polymerization Versus Miniemulsion Polymerization</td>
<td>100</td>
</tr>
<tr>
<td>4.8</td>
<td>Synthesis of PGNs Using the RAFT Process in Miniemulsion</td>
<td>101</td>
</tr>
<tr>
<td>4.9</td>
<td>Characterization of PGNs Synthesized by the RAFT Method</td>
<td>103</td>
</tr>
<tr>
<td>4.9.1</td>
<td>FT-IR and Solubility Analysis</td>
<td>103</td>
</tr>
<tr>
<td>4.9.2</td>
<td>TEM Analysis</td>
<td>105</td>
</tr>
<tr>
<td>4.9.3</td>
<td>XRD Analysis</td>
<td>106</td>
</tr>
<tr>
<td>4.9.4</td>
<td>SEC Analysis</td>
<td>107</td>
</tr>
<tr>
<td>4.9.5</td>
<td>Mechanical Properties</td>
<td>108</td>
</tr>
<tr>
<td>4.9.6</td>
<td>Thermal Stability</td>
<td>110</td>
</tr>
<tr>
<td>4.10</td>
<td>Conclusions</td>
<td>111</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>112</td>
</tr>
</tbody>
</table>

Chapter 5 *In Situ* Polymerization in the Presence of Graphene

Yuan Hu and Chenlu Bao

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>117</td>
</tr>
<tr>
<td>5.2</td>
<td>Polyaniline (PANI)</td>
<td>118</td>
</tr>
<tr>
<td>5.3</td>
<td>Polypyrrole (PPy)</td>
<td>121</td>
</tr>
<tr>
<td>5.4</td>
<td>Epoxy</td>
<td>124</td>
</tr>
<tr>
<td>5.5</td>
<td>Poly(methyl methacrylate) (PMMA)</td>
<td>125</td>
</tr>
<tr>
<td>5.6</td>
<td>Polystyrene (PS)</td>
<td>126</td>
</tr>
<tr>
<td>5.7</td>
<td>Polyurethane (PU)</td>
<td>130</td>
</tr>
<tr>
<td>5.8</td>
<td>Other Polymers</td>
<td>131</td>
</tr>
<tr>
<td>5.9</td>
<td>Summary</td>
<td>132</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

Chapter 6 Microstructure and Properties of Compatibilized Polyethylene–Graphene Oxide Nanocomposites

A. U. Chaudhry, Vikas Mittal and N. B. Matsko

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental</td>
<td>144</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Materials</td>
<td>144</td>
</tr>
</tbody>
</table>
6.2.2 Preparation of Graphite Oxide and Graphene Oxide 144
6.2.3 Nanocomposite Generation 145
6.2.4 Material Characterization 145
6.3 Results and Discussion 146
6.4 Conclusions 159
Acknowledgements 159
References 159

Chapter 7 pH-Sensitive Graphene–Polymer Nanocomposites 162
Jingquan Liu and Thomas P. Davis

7.1 Introduction 162
7.2 Preparation of Graphene–Polymer Nanocomposites 164
 7.2.1 Covalent Bonding 164
 7.2.2 Non-Covalent Interactions 165
7.3 Applications of pH-Sensitive Graphene Polymer Nanocomposites 167
 7.3.1 Sensors and Detection Devices 167
 7.3.2 Catalysis and Cells 170
 7.3.3 Supercapacitors 171
 7.3.4 Drug Delivery 172
 7.3.5 Others 173
7.4 Conclusions and Perspectives 174
Acknowledgement 174
References 174

Chapter 8 Dispersible Graphene Oxide–Polymer Nanocomposites 179
Gang Liu, Koon-Gee Neoh and En-Tang Kang

8.1 Introduction 179
8.2 Covalently Functionalized Graphene Oxide–Polymer Nanocomposites 180
8.3 The ‘Grafting from’ Approach 182
8.4 The ‘Grafting to’ Approach 189
8.5 Non-Covalent Functionalization of Graphene Oxide Nanosheets 196
8.6 Summary and Future Challenges 203
References 204
Chapter 9 Graphene–Conducting Polymer Nanocomposites Prepared by Interfacial Polymerization 211
Sergio H. Domingues, Rodrigo V. Salvatierra and Aldo J.G. Zarbin

9.1 Introduction 211
9.2 Conducting Polymers 212
 9.2.1 Polyaniline (PANI) 213
9.3 Graphene–Polyaniline Nanocomposites 214
9.4 Graphene–Polyaniline Nanocomposites Through Interfacial Polymerization 215
9.5 Conclusion and Final Remarks 223
References 224

Chapter 10 Crystallization Properties of Isotactic Polypropylene–Graphene Nanocomposites 227
Jia-Zhuang Xu, Zhong-Ming Li and Benjamin S. Hsiao

10.1 Introduction 227
10.2 Intrachain Conformational Ordering of iPP–Graphene Nanocomposites 229
10.3 Crystallization Kinetics of iPP–Graphene Nanocomposites Under Shear Flow 235
 10.3.1 Crystallization Under Quiescent Conditions 235
 10.3.2 Crystallization Under Shear Flow 236
 10.3.3 Combined Effect of GNSs and Shear Flow on Crystallization of iPP 245
10.4 Summary 249
Acknowledgement 249
References 249

Subject Index 252