CONTENTS

Preface xix

Part I The Context of Database Management 1
An Overview of Part One 1

Chapter 1 The Database Environment and Development Process 2
Learning Objectives 2
Introduction 2
Basic Concepts and Definitions 4
Data 4
Data Versus Information 5
Metadata 6
Traditional File Processing Systems 7
Disadvantages of File Processing Systems 7
Program-Data Dependence 7
Duplication of Data 8
Limited Data Sharing 8
Lengthy Development Times 8
Excessive Program Maintenance 8
The Database Approach 8
Data Models 8
Entities 8
Relationships 9
Relational Databases 10
Database Management Systems 10
Advantages of the Database Approach 11
Program-Data Independence 11
Planned Data Redundancy 11
Improved Data Consistency 11
Improved Data Sharing 11
Increased Productivity of Application Development 12
Enforcement of Standards 12
Improved Data Quality 12
Improved Data Accessibility and Responsiveness 13
Reduced Program Maintenance 13
Improved Decision Support 13
Cautions About Database Benefits 13
Costs and Risks of the Database Approach 13
New, Specialized Personnel 14
Installation and Management Cost and Complexity 14
Conversion Costs 14
Need for Explicit Backup and Recovery 14
Organizational Conflict 14
Components of the Database Environment 14
The Database Development Process 16
Contents

Part II Database Analysis 43

An Overview of Part Two 43

Chapter 2 Modeling Data in the Organization 45

Learning Objectives 45
Introduction 45
The E-R Model: An Overview 47
Sample E-R Diagram 47
E-R Model Notation 49
Modeling the Rules of the Organization 50
Data Names and Definitions 50
DATA NAMES 51
DATA DEFINITIONS 51
GOOD DATA DEFINITIONS 51
Modeling Entities and Attributes 53
Entities 53
ENTITY TYPE VERSUS ENTITY INSTANCE 53
ENTITY TYPE VERSUS SYSTEM INPUT, OUTPUT, OR USER 54
STRONG VERSUS WEAK ENTITY TYPES 55
NAMING AND DEFINING ENTITY TYPES 55
Attributes 57
- Required Versus Optional Attributes 57
- Simple Versus Composite Attributes 58
- Single-Valued Versus Multivalued Attributes 59
- Stored Versus Derived Attributes 59
- Identifier Attribute 59
- Naming and Defining Attributes 61

Modeling Relationships 62
- Basic Concepts and Definitions in Relationships 63
 - Attributes on Relationships 63
 - Associative Entities 65
- Degree of a Relationship 66
 - Unary Relationship 67
 - Binary Relationship 67
 - Ternary Relationship 68
- Attributes or Entity? 69
- Cardinality Constraints 71
 - Minimum Cardinality 71
 - Maximum Cardinality 72
- Some Examples of Relationships and Their Cardinalities 72
 - A Ternary Relationship 73
- Modeling Time-Dependent Data 74
- Modeling Multiple Relationships Between Entity Types 75
- Naming and Defining Relationships 76

E-R Modeling Example: Pine Valley Furniture Company 78

Chapter 3 The Enhanced E-R Model 93

Learning Objectives 93

Introduction 93

Representing Supertypes and Subtypes 94

Basic Concepts and Notation 94

An Example of a Supertype/Subtype Relationship 95

Attribute Inheritance 96

When to Use Supertype/Subtype Relationships 97

Representing Specialization and Generalization 97

Generalization 98

Specialization 99

Combining Specialization and Generalization 100

Specifying Constraints in Supertype/Subtype Relationships 100

Specifying Completeness Constraints 101

Total Specialization Rule 101

Partial Specialization Rule 101
Specifying Disjointness Constraints 101
 DISJOINT RULE 102
 OVERLAP RULE 102
Defining Subtype Discriminators 102
 DISJOINT SUBTYPES 103
 OVERLAPPING SUBTYPES 103
Defining Supertype/Subtype Hierarchies 105
 AN EXAMPLE OF A SUPERTYPE/SUBTYPE HIERARCHY 105
 SUMMARY OF SUPERTYPE/SUBTYPE HIERARCHIES 106
EER Modeling Example: Pine Valley Furniture Company 106
Packaged Data Models 110
 A Revised Data Modeling Process with Packaged Data Models 110
Summary of Prepackaged Data Models 112
 Summary 112 • Key Terms 113 • Review Questions 113 •
 Problems and Exercises 114 • References 116 • Further
 Reading 117 • Web Resources 117

Part III Database Design 119
An Overview of Part Three 119
Chapter 4 Logical Database Design and the Relational Model 121
 Learning Objectives 121
 Introduction 121
 The Relational Data Model 122
 Basic Definitions 122
 RELATIONAL DATA STRUCTURE 123
 RELATIONAL KEYS 123
 PROPERTIES OF RELATIONS 124
 REMOVING MULTIVALUED ATTRIBUTES FROM TABLES 124
 Sample Database 124
 Integrity Constraints 126
 Domain Constraints 126
 Entity Integrity 126
 Referential Integrity 128
 Creating Relational Tables 129
 Well-Structured Relations 130
 Transforming EER Diagrams into Relations 131
 Step 1: Map Regular Entities 132
 COMPOSITE ATTRIBUTES 132
 MULTIVALUED ATTRIBUTES 133
 Step 2: Map Weak Entities 133
 WHEN TO CREATE A SURROGATE KEY 134
 Step 3: Map Binary Relationships 135
 MAP BINARY ONE-TO-MANY RELATIONSHIPS 135
 MAP BINARY MANY-TO-MANY RELATIONSHIPS 135
 MAP BINARY ONE-TO-ONE RELATIONSHIPS 136
 Step 4: Map Associative Entities 137
 IDENTIFIER NOT ASSIGNED 137
 IDENTIFIER ASSIGNED 138
Step 5: Map Unary Relationships 139
 UNARY ONE-TO-MANY RELATIONSHIPS 139
 UNARY MANY-TO-MANY RELATIONSHIPS 139
Step 6: Map Ternary (and n-ary) Relationships 141
Step 7: Map Supertype/Subtype Relationships 141
Summary of EER-to-Relational Transformations 143

Introduction to Normalization 144
Steps in Normalization 145
 Functional Dependencies and Keys 146
 DETERMINANTS 146
 CANDIDATE KEYS 146
Normalization Example: Pine Valley Furniture Company 148
Step 0: Represent the View in Tabular Form 148
Step 1: Convert to First Normal Form 149
 REMOVE REPEATING GROUPS 149
 SELECT THE PRIMARY KEY 149
 ANOMALIES IN 1NF 150
Step 2: Convert to Second Normal Form 150
Step 3: Convert to Third Normal Form 151
 REMOVING TRANSITIVE DEPENDENCIES 152
Determinants and Normalization 152
Merging Relations 153
An Example 154
View Integration Problems 154
 SYNONYMS 154
 HOMONYMS 155
 TRANSITIVE DEPENDENCIES 155
 SUPERTYPE/SUBTYPE RELATIONSHIPS 156
Summary 156 • Key Terms 157 • Review Questions 157 • Problems and Exercises 158 • References 165 • Further Reading 165 • Web Resources 165

Chapter 5 Physical Database Design and Performance 166
Learning Objectives 166
Introduction 166
The Physical Database Design Process 167
 Physical Database Design As a Basis for Regulatory Compliance 168
Designing Fields 169
 Choosing Data Types 169
 CODING TECHNIQUES 170
 HANDLING MISSING DATA 171
Denormalizing Data 171
 Denormalization 172
 OPPORTUNITIES FOR AND TYPES OF DENORMALIZATION 172
 DENORMALIZE WITH CAUTION 174
Designing Physical Database Files 175
File Organizations 176
 SEQUENTIAL FILE ORGANIZATIONS 178
 INDEXED FILE ORGANIZATIONS 179
 HASHED FILE ORGANIZATIONS 180
Chapter 7 Advanced SQL 232
Learning Objectives 232
Introduction 232
Processing Multiple Tables 233
 Equi-Join 234
 Natural Join 235
 Outer Join 236
 Sample Join Involving Four Tables 238
 Self-Join 239
 Subqueries 241
 Correlated Subqueries 246
 Using Derived Tables 247
 Combining Queries 248
Tips for Developing Queries 250
 Guidelines for Better Query Design 252
Ensuring Transaction Integrity 253
Data Dictionary Facilities 255
Triggers and Routines 256
 Triggers 256
 Routines 258
 Example Routine in Oracle's PL/SQL 259
Embedded SQL and Dynamic SQL 261
 Summary 262 • Key Terms 263 • Review Questions 263 • Problems and Exercises 264 • References 267 • Further Reading 267 • Web Resources 267

Chapter 8 Database Application Development 268
Learning Objectives 268
Introduction 268
Client/Server Architectures 269
Databases in a Two-Tier Architecture 271
 A VB.NET Example 272
 A Java Example 274
Three-Tier Architectures 275
Web Application Components 278
Databases in Three-Tier Applications 278
 A JSP Web Application 279
 An ASP.NET Example 282
Key Considerations in Three-Tier Applications 283
 Stored Procedures 284
 Transactions 285
 Database Connections 285
 Key Benefits of Three-Tier Applications 285
 Cloud Computing and Three-Tier Applications 287
Extensible Markup Language (XML) 288
 Storing XML Documents 290
 Retrieving XML Documents 290
Chapter 9 Data Warehousing 300

Learning Objectives 300

Introduction 300

Basic Concepts of Data Warehousing 302

A Brief History of Data Warehousing 303

The Need for Data Warehousing 303

Need for a Company-Wide View 303

Need to Separate Operational and Informational Systems 306

Data Warehouse Architectures 306

Independent Data Mart Data Warehousing Environment 306

Dependent Data Mart and Operational Data Store Architecture: A Three-Level Approach 308

Logical Data Mart and Real-Time Data Warehouse Architecture 310

Three-Layer Data Architecture 312

Role of the Enterprise Data Model 313

Role of Metadata 313

Some Characteristics of Data Warehouse Data 314

Status Versus Event Data 314

Transient Versus Periodic Data 315

An Example of Transient and Periodic Data 315

Transient Data 315

Periodic Data 316

Other Data Warehouse Changes 317

The Derived Data Layer 317

Characteristics of Derived Data 318

The Star Schema 318

Fact Tables and Dimension Tables 319

Example Star Schema 320

Surrogate Key 321

Grain of the Fact Table 322

Duration of the Database 322

Size of the Fact Table 323

Modeling Date and Time 324

Multiple Fact Tables 324

Hierarchies 325

Slowly Changing Dimensions 328

Determining Dimensions and Facts 329

Big Data and Columnar Databases 331

If You Knew SQL Like I NoSQL 332

The User Interface 333

Role of Metadata 334

SQL OLAP Querying 334