Biomass for Sustainable Applications
Pollution Remediation and Energy

Edited by

Sarra Gaspard
Université des Antilles et de la Guyane, Guadeloupe, French West Indies, France
Email: sarra.gaspard@univ-ag.fr

and

Mohamed Chaker Ncibi
Université des Antilles et de la Guyane, Guadeloupe, French West Indies, France
Email: nmchaker@yahoo.fr
Contents

Chapter 1 Biomass for Water Treatment: Biosorbent, Coagulants and Flocculants 1
 Sandro Altenor and Sarra Gaspard

1.1 Introduction 1
1.2 Biosorption by Biomass 2
 1.2.1 Biosorption by Different Types of Biomass 2
 1.2.2 Characterisation of Biosorbents Surface 6
 1.2.3 Mechanism of Biosorption 12
 1.2.4 Factors Affecting Biosorption 14
 1.2.5 Biosorption of Pollutants 20
1.3 Biomass-based Flocculants and Coagulants 28
 1.3.1 Terrestrial Plant Based Bioflocculants 29
 1.3.2 Bioflocculants from Marine Biomass 34
 1.3.3 Bioflocculants from Microorganisms 35
1.4 Conclusions 36
References 37

Chapter 2 Activated Carbon from Biomass for Water Treatment 46
 Sarra Gaspard, Nady Passé-Coutrin, Axelle Durimel,
 Thierry Cesaire and Valérie Jeanne-Rose

2.1 Introduction 46
2.2 Activated Carbon Preparation 47
 2.2.1 Physical Activation 47
 2.2.2 Chemical Activation 53
 2.2.3 Microwave Heating 54
 2.2.4 Hydrothermal Treatment 56
Chapter 3 Plants for Soil Remediation
Borhane Mahjoub

3.1 Introduction
3.2 Phytoextraction
3.2.1 Contaminant Hyperaccumulation and Enhanced Phytoextraction
3.2.2 Hyperaccumulating Plants (Hyperaccumulators)
3.3 Phytostabilisation
3.4 Rhizodegradation
3.4.1 Rhizosphere Biodegradation
3.4.2 Benefits and Impediments of Rhizodegradation
3.4.3 Contaminants and Applicable Plants
3.5 Phytodegradation
3.5.1 Plant Uptake and Metabolism
3.5.2 Concerned Contaminants and Applicable Plants
3.6 Phytovolatilisation
3.7 Vegetative Cover Systems
3.7.1 Conventional Capping and Evapotranspiration Cover Systems
3.7.2 Factors to be Considered
3.8 Conclusions
3.8.1 Advantages and Constraints of Phytoremediation
3.8.2 Future Outlook
References

Chapter 4 Microorganisms for Soil Treatment
Alfredo Pérez-de-Mora, Laurent Laquitaine and Sarra Gaspard

4.1 Introduction
4.2 Bacterial Bioremediation
4.2.1 Heavy Metals, Metalloids and Radionuclides 145
4.2.2 Organic Compounds 151
4.3 Fungal Bioremediation
4.3.1 Introduction 177
4.3.2 Pollutant Degradation by Fungi and Application for Bioremediation 178
4.3.3 Other Examples of Fungi Application for Bioremediation 191
4.4 Biosurfactants for Soil Bioremediation
4.4.1 Classes and Origin of Biosurfactants 196
4.4.2 Mechanism of Action of Biosurfactants 198
4.4.3 Removal of Hydrocarbon and Oil by Biosurfactants 199
4.4.4 Removal of PAHs by Biosurfactants 201
4.4.5 Removal of Chlorinated Compounds and Pesticides by Biosurfactants 201
4.4.6 Removal of Metals 202
4.4.7 Field Studies 203
4.4.8 Conclusions 204
4.5 Perspectives 204
Acknowledgements 205
References 205

Chapter 5 Biological Waste Gas Treatments
Pierre Le Cloirec, Abdeltif Amrane, Benoit Anet and Catherine Couriol

5.1 Introduction 222
5.2 General Approaches to Biological Treatment of Waste Gases 223
5.3 Biofilters
5.3.1 Process Description and Mechanism 226
5.3.2 Operating Conditions and Performance 229
5.3.3 Modelling a Biofilter 234
5.4 Biotrickling Filters
5.4.1 Process Description and Mechanism 235
5.4.2 Operating Conditions and Performance 236
5.4.3 Modelling a Biotrickling Filter 238
5.5 Bioscrubbers
5.5.1 Process Description and Mechanism 241
5.5.2 Operating Conditions and Performance 242
5.5.3 Modelling a Bioscrubber 243
5.6 Conclusions and Trends 244
References 245
Chapter 8 Hydrogen Production from Biomass Derivatives over Heterogeneous Photocatalysts

Katsuya Shimura and Hisao Yoshida

8.1 Introduction
8.2 Hydrogen Production Methods from Biomass other than Photocatalysis
 8.2.1 Thermal Gasification of Biomass
 8.2.2 Fermentation of Biomass
 8.2.3 Steam Reforming of Methane
8.3 Photocatalytic Hydrogen Production from Water and Biomass Derivatives
 8.3.1 Thermodynamic and Electrochemical Perspectives
 8.3.2 Hydrogen Production from Water and Alcohols/Acids/Sugars over TiO₂ Photocatalyst
 8.3.3 Hydrogen Production from Water and Alcohols/Acids/Sugars over Photocatalysts other than TiO₂
 8.3.4 Photocatalytic Steam Reforming of Methane
8.4 Conclusions and Outlook
References

Chapter 9 Nanoporous Carbons for High Energy Density Supercapacitors

Pierre-Louis Taberna and Sarra Gaspard

9.1 Introduction
9.2 Basics Concerning EDLCs
9.3 Toward Higher Energy Density
9.4 Active Material
 9.4.1 Activated Carbons
 9.4.2 Activated Carbon Fibres
 9.4.3 Templated Porous Carbons
 9.4.4 Carbon Aerogels and Xerogels
 9.4.5 Carbon Nanotubes
 9.4.6 Onion-like Carbons
 9.4.7 Carbon Obtained from Biomass
 9.4.8 Carbide-derived Carbons
9.5 Issue of Surface Area
9.6 Influence of Pore Diameter
9.7 Application: Bulky CDC Layers and Micro Supercapacitors
References