Contents

Contributor contact details xiii
Woodhead Publishing Series in Biomaterials xix

Part I Materials, properties and considerations

1 Introduction to nanomedicine 3
C. Yao, Nanovis LLC, USA and J. Lu, Purdue University, USA

1.1 Introduction: basic concepts of nanomedicine 3
1.2 Public perception of nanomedicine 4
1.3 Scientific principles and applications of nanomedicine 5
1.4 Future trends in nanomedicine 10
1.5 References 16

2 Trends in nanomedicine 20
F. Allhoff, Western Michigan University, USA

2.1 Introduction 20
2.2 The rise of nanomedicine 21
2.3 Diagnostics and medical records 24
2.4 Treatment 27
2.5 Future trends 31
2.6 References 34

3 Biomedical nanocrystalline metals and alloys: structure, properties and applications 36
D. Facchini, Integran Technologies Inc., Canada

3.1 Introduction 36
3.2 Synthesis and structure of nanocrystalline metals and alloys 36

© Woodhead Publishing Limited, 2012
Contents

3.3 Properties of nanocrystalline metals and alloys 39
3.4 Biocompatibility of nanocrystalline metals and alloys 52
3.5 Applications of nanocrystalline metals and alloys 55
3.6 Future trends 59
3.7 Sources of further information and advice 61
3.8 References 61

4 Nanoporous gold for biomedical applications: structure, properties and applications 68
T. M. Martin, University of North Carolina Chapel Hill and North Carolina State University, USA, D. B. Robinson, Sandia National Laboratories, USA and R. J. Narayan, University of North Carolina Chapel Hill and North Carolina State University, USA

4.1 Introduction 68
4.2 Medical applications 72
4.3 Biosensor applications 75
4.4 Alloy formation 76
4.5 Dealloying of gold–silver alloy 77
4.6 Mechanical properties of nanoporous gold 79
4.7 Electronic properties of nanoporous gold 80
4.8 Conclusions 81
4.9 References 81

5 Hydroxyapatite (HA) coatings for biomaterials 84
P. Choudhury and D.C. Agrawal, CSJM University, India

5.1 Introduction 84
5.2 Hydroxyapatite (HA) coatings 85
5.3 HA coatings by plasma spraying 88
5.4 Properties of plasma-sprayed coatings 92
5.5 Biomimetic HA coatings 98
5.6 HA coatings by sol-gel deposition 102
5.7 Miscellaneous deposition techniques for HA coatings 113
5.8 Conclusions 120
5.9 Future trends 121
5.10 Acknowledgement 122
5.11 References 122

© Woodhead Publishing Limited, 2012
Part II Nanomedicine for therapeutics and imaging

6 Calcium phosphate-coated magnetic nanoparticles for treating bone diseases 131
R. A. Pareta, Wake Forest Institute for Regenerative Medicine, USA and S. Sirivisoot, King Mongkut’s University of Technology Thonburi, Thailand

6.1 Introduction 131
6.2 Iron oxide magnetic nanoparticle synthesis 134
6.3 Surface modification of iron oxide magnetic nanoparticles 136
6.4 Characterization of iron oxide magnetic nanoparticles 137
6.5 Biological applications of magnetic nanoparticles 143
6.6 Conclusions 145
6.7 Future trends 146
6.8 References 146

7 Orthopedic carbon nanotube biosensors for controlled drug delivery 149
S. Sirivisoot, King Mongkut’s University of Technology Thonburi, Thailand and R. A. Pareta, Wake Forest Institute for Regenerative Medicine, USA

7.1 Introduction 149
7.2 Carbon nanotubes for electrochemical biosensing 152
7.3 Carbon nanotube-based in situ orthopedic implant sensors 154
7.4 Electrically controlled drug-delivery systems for infection and inflammation 161
7.5 Critical issues in developing in situ orthopedic implantable sensors and devices 167
7.6 Conclusions 172
7.7 References 172

8 Nanostructured selenium anti-cancer coatings for orthopedic applications 180
P. A. Tran, Brown University, USA and T. J. Webster, Northeastern University, USA

8.1 Introduction 180
8.2 Selenium as an anti-cancer implant material 182
8.3 Nano-structured selenium coatings: a novel approach of using selenium to create anti-cancer biomaterials 183
8.4 In vitro biological assays for uncoated and selenium-coated metallic substrates 187
8.5 The effectiveness of titanium and stainless steel substrates 191
8.6 Coarse-grained Monte Carlo computer simulation of fibronectin adsorption on nanometer rough surfaces 213
8.7 Conclusions 227
8.8 References 228

9 Nanoparticulate targeted drug delivery using peptides and proteins 236
H. A. Santos and L. M. Bimbo, University of Helsinki, Finland, J. Das Neves, University of Porto, Portugal and B Sarmento, University of Porto, Portugal, INEB, Porto, Portugal and Instituto Superior de Ciências da Saúde – Norte, Portugal

9.1 Introduction 237
9.2 Peptides and proteins for targeted drug delivery 238
9.3 Drug–peptide conjugates 247
9.4 Peptide-functionalized drug delivery systems 250
9.5 Peptide-targeted drug delivery across the intestine 257
9.6 Peptide-targeted drug delivery across the blood–brain barrier (BBB) 258
9.7 Peptide-targeted drug delivery for cancer applications 266
9.8 Peptide-targeted drug delivery for the liver 276
9.9 Conclusions and future trends 278
9.10 References 279

10 Nanotechnology for DNA and RNA delivery 302
H. Yu, Boston College, USA and Y. Chen, Brown University, USA

10.1 Introduction to DNA and RNA delivery 302
10.2 Advanced DNA/RNA delivery approaches in nanotechnology 304
10.3 Nanomaterial applications for DNA/RNA delivery 310
10.4 Novel vaccines 314
10.5 Molecular probes and images 315
10.6 Conclusions and future trends 316
10.7 References 317

© Woodhead Publishing Limited, 2012
Contents ix

11 Gold nanoshells for imaging and photothermal ablation of cancer 326
A. J. Coughlin and J. L. West, Rice University, USA

11.1 Introduction 326
11.2 The impact of cancer 327
11.3 Cancer biology 327
11.4 Nanotechnology and cancer treatment 330
11.5 Nanoshells 334
11.6 Conclusions and future trends 348
11.7 Sources of further information and advice 350
11.8 Acknowledgments 350
11.9 References 351

12 Microfluidics for testing and delivering nanomedicine 356
H. van Heeren, enablingMNT, The Netherlands

12.1 Introduction 356
12.2 Microfluidics 358
12.3 Testing of nanomedicine with microfluidic instruments 366
12.4 Delivery of nanomedicine using microfluidic technology 369
12.5 Nanoparticles 374
12.6 Conclusions and future trends 374
12.7 References 376

13 Zinc oxide nanowires for biomedical sensing and analysis 377
M. Willander and O. Nur, Linköping University, Sweden

13.1 Introduction 377
13.2 Electrode growth and preparation 380
13.3 Sensors and functionalization 384
13.4 Measurement and results 384
13.5 Conclusions 396
13.6 References 397

Part III Nanomedicine for soft tissue engineering

14 Nanotechnology and tissue-engineered organ regeneration 403
A. O. Oseni and A. M. Seifalian, University College London, UK

© Woodhead Publishing Limited, 2012
14.1 Introduction 403
14.2 Nanotechnology and tissue engineering 407
14.3 Nanotechnology and organ regeneration 413
14.4 Future trends and challenges 420
14.5 References 421

15 Rapid fabrication of biomimetic nanofiber-enabled skin grafts 428
X. Fu and H. Wang, Stevens Institute of Technology, USA
15.1 Introduction 428
15.2 Autologous skin tissue engineering for wound healing 431
15.3 The effects of microenvironment on the formation of skin substitute 434
15.4 Production of biomimetic nanofibers using electrostatic spinning 435
15.5 Layer-by-layer assembly of cells into 3-D constructs using electrospun nanofibers 441
15.6 Rapid formation of skin grafts using the nanofiber-enabled cell-layering approach 445
15.7 Future trends and challenges 447
15.8 Conclusion 449
15.9 Acknowledgement 450
15.10 References 450

16 Nanotubes for tissue engineering 460
P. E. Mikael, University of Connecticut, USA, J. A. Wallace, University of Connecticut Health Center, USA and S. P. Nukavarapu, University of Connecticut, USA
16.1 Introduction 460
16.2 Nanotubes for tissue engineering 461
16.3 Nanotube applications in tissue engineering 470
16.4 Nanotubes and their effects 477
16.5 Conclusions 483
16.6 References 483

17 Self-assembled nanomaterials for tissue-engineering applications 490
A. Alsbaiee, R. L. Beigessner and H. Fenniri, University of Alberta, Canada
17.1 Introduction
17.2 Peptide-based self-assembled nanomaterials
17.3 Applications of peptide-based materials in tissue engineering
17.4 Nucleic acid-based nanomaterials
17.5 Applications of rosette nanotubes (RNTs) in bone and cartilage tissue engineering
17.6 References

Part IV Nanomedicine for bone and cartilage tissue engineering
18 Electrically active biocomposites as smart scaffolds for bone tissue engineering
A. K. Dubey, Indian Institute of Science, Bangalore, India, K. Balani, IIT Kanpur, India, and B. Basu, Indian Institute of Science, Bangalore, India
18.1 Introduction
18.2 Composition and electrical properties of natural bone
18.3 Effect of an external E-field on cells
18.4 Development of hydroxyapatite (HA)-based bone replacement materials
18.5 Conclusions
18.6 Acknowledgement
18.7 References

19 Nanotechnology for cartilage and bone regeneration
L. G. Zhang, J. Li and J. D. Lee, The George Washington University, USA
19.1 Introduction
19.2 Cartilage repair and regeneration
19.3 Bone repair and regeneration
19.4 Future trends and conclusions
19.5 References

20 Nanostructured materials for bone tissue replacement
M. Musib and S. Saha, SUNY Downstate Medical Center, USA
20.1 Introduction